Popis: |
Testiranje stabilnosti je pomemben del razvoja zdravil. S pomočjo stabilnostne študije, ki jo predpisuje smernica ICH Q1A(R2), določimo rok uporabnosti in pogoje shranjevanja zdravila. Stabilnostne študije, ki so zasnovane tako, kot predpisujejo regulatorne smernice za registracijo zdravila v določeni državi, vključujejo veliko število vzorcev in analiz, ki jih je potrebno izvesti na vsakem vzorcu. Temeljijo na analiziranju kritičnih parametrov, za katere menimo, da se bodo spreminjali tekom shranjevanja zdravila in tako vplivali na njegovo kakovost. Na stabilnost zdravil lahko vplivajo številni dejavniki (t.i. faktorji), kot so temperatura, vlaga, svetloba, čas shranjevanja in primarna ovojnina. Na stabilnostno študijo lahko tako gledamo kot na popolni več-faktorski in več-nivojski mešani eksperimentalni načrt, v katerem se vrednosti faktorjev spreminjajo po točno določenih pravilih, kar je tudi glavna značilnost načrtovanja eksperimentov. V doktorski nalogi je v treh samostojnih poglavjih prikazan celovit pristop obdelave in prikaza stabilnostnih podatkov z uporabo načrtovanja eksperimentov (DoE) in multivariabilnih statističnih metod. Vsako poglavje predstavlja analizo stabilnostne študije enega zdravila. Multivariabilni statistični metodi, ki smo ju uporabili, sta metoda delnih najmanjših kvadratov (PLS) in multipla linearna regresija (MLR), ki nam omogočata analizo vplivov več faktorjev hkrati, njihovih interakcij ter napovedovanje odzivov novih več-faktorskih eksperimentov. Za prvo zdravilo z nestabilno zdravilno učinkovino - hidroklorotiazidom (HKTZ) smo razvili PLS model celotne stabilnostne študije. Prikazali smo vplive posameznih faktorjev in dvosmernih interakcij faktorjev na vsebnost glavnega razkrojnega produkta 4-amino-6-klorobenzen-1,3-disulfonamida (DSA). Ugotovili smo, da ima interakcija med faktorjema »ovojnina« in »čas« največji vpliv na nastanek DSA. S pomočjo konturnih diagramov smo ugotovili, da pretisni omot iz poliviniliden klorida (PVDC) najslabše ščiti HKTZ pred razgradnjo. Prav tako smo z modelom lahko predvideli stabilnost zdravila pri treh različnih pogojih testiranja (dolgoročnem, vmesnem in pospešenem pogoju). Nadalje smo z več kot polovično reduciranim stabilnostnim načrtom pokazali, da PLS model napoveduje podobne nivoje DSA kot polni načrt za zdravilo, pakirano v PVDC pretisni omot. Za zdravilo s kemijsko nestabilno zdravilno učinkovino saksagliptin (SAXA) smo s PLS analizo stabilnostnih podatkov do šestega meseca napovedali, da so nivoji nečistote DP-2 nižji za vsaj 0,2%, kadar je zdravilo po izdelavi zaščiteno pred kisikom. Ugotovili smo, da je nižja jakost zdravila vsaj dvakrat manj stabilna glede na nastanek nečistote DP-1. Z modelom smo z visoko zanesljivostjo napovedali rok uporabnosti zdravila za klimatsko cono II, t.j. 24 mesecev. Napovedi z modelom PLS za nečistoto DP-1 in vsoto skupnih nečistot so bile bolj točne kot tiste, ki smo jih pridobili s standardno linearno regresijo, s tem da smo za PLS analizo uporabili veliko večji nabor podatkov. V tretjem poglavju smo se za primer zdravila s prirejenim sproščanjem osredotočili na raziskovanje možnih vzrokov za pospešitev sproščanja kemijsko stabilne zdravilne učinkovine tekom testiranja stabilnosti. Z modeliranjem stabilnostnih rezultatov do šestih mesecev z MLR smo ugotovili, da lahko zmanjšanje prisotnosti antioksidanta butil hidroksitoluena v tableti tekom stabilnosti povzroči pospešitev sproščanja zdravilne učinkovine. Poleg tega na hitrejši profil sproščanja vplivajo tudi drugi dejavniki v vstopnih materialih in procesih izdelave zdravila. Dodatno smo pokazali koristnost metodologije za podporo uporabe pristopa vitke stabilnosti pri dolgoročnem stabilnostnem testiranju. S pridobljenim znanjem o stabilnosti zdravila smo zasnovali dve optimizirani študiji dolgoročne stabilnosti. Pokazali smo, da z manjšim obsegom testiranja glede na polni stabilnosti načrt dolgoročne stabilnosti, še vedno lahko potrdimo 24 mesečni rok uporabnosti glede na vrednosti najbolj kritičnega stabilnostnega parametra. V doktorski disertaciji smo prikazali uporabnost metodologije DoE in multivariabilnih statističnih metod za analizo in prikaz stabilnostnih podatkov. Takšen pristop za analizo vseh stabilnostnih podatkov, pridobljenih v skladu z ICH smernicami, še ni bil opisan v literaturi. Pokazali smo, da tovrstna metodologija v primerjavi s klasično enostavno linearno regresijo (LR) omogoča bolj celovit pristop k analizi velikega števila pridobljenih podatkov. S trenutno uveljavljenimi statistični pristopi (LR in analiza kovariance) za analizo uporabimo le majhen del podatkov, ki so nam na voljo, saj se osredotočimo le na časovni potek stabilnostno najbolj kritičnega parametra. Z multivariabilnimi metodami lahko uporabimo vse podatke, ki so na voljo, in določamo vplive faktorjev ter njihovih interakcij na stabilnost zdravila. Z metodo LR ne moremo predvideti vpliva interakcij med faktorji. Prikazan pristop nam prav tako lahko pomaga napovedovati stabilnost zdravila za netestirane faktorje in predvideti rezultate izven kriterijev sprejemljivosti. Prednost pristopa je tudi, da nam omogoča oceno, ali bi lahko za določitev roka uporabnosti zdravila optimizirali stabilnostne študije brez izgube ključnih informacij o stabilnosti zdravila. Stability studies are an important part of drug development. The aim of a stability study performed according to ICH Q1A(R2) is to determine the shelf life and storage conditions of a drug. Stability studies are designed as recommended in regulatory guidelines for a specific country and include a large number of samples and analysis to be performed on those samples. They are based on the analysis of critical parameters that are believed to be the subject of change during the storage of the drug and thus affect its quality. The stability of a drug can be affected by a number of factors such as temperature, humidity, light, storage time and packaging material. Thus, stability studies can be seen as a complete multi-factor and multi-level mixed experimental design, in which factor values change according to well-defined rules, which is also the main feature of experimental designs. This doctoral thesis presents a comprehensive approach of evaluation and presentation of stability data using Design of Experiments (DoE) and multivariable statistical methods. The results are presented in three separate chapters. Each chapter presents an analysis of a different drug stability study. For the analysis we used multivariable statistical methods, the Partial least squares (PLS) method and the Multiple linear regression (MLR) method, which allow us to analyze the effects of several factors simultaneously, their interactions, and predict the responses of new multi-factor experiments. For the first drug with an unstable active pharmaceutical ingredient (API) Hydrochlorothiazide (HKTZ), we developed a PLS model from all the stability study data obtained. We have shown the influences of individual factors and two-way factor interactions on the content of the major degradation product DSA. We found that the interaction between factors »packaging« and »time« has the biggest impact on 4-amino-6-chlorobenzene-1,3-disulfonamide (DSA) formation. With the use of a contour diagram, we determined that a polyvinylidene chloride (PVDC) blister offers the least protection from degradation of HKTZ. With the model we were also able to predict the drug stability at three different testing conditions (long-term, intermediate and accelerated condition). Furthermore, with a more than half-reduced stability design, we showed that the PLS model predicts similar DSA levels as the full stability design for a drug packaged in a PVDC blister. For the drug with the chemically unstable API saxagliptin (SAXA), we developed a PLS model of up to the sixth month stability data and predicted that the levels of impurity DP-2 were lower by at least 0.2% when the drug was protected from oxygen right after manufacturing. We found that the lower strength of the drug was at least twice less stable with respect to the formation of impurity DP-1. Additionally, we predicted the shelf life of the drug for climate zone II, i.e. 24 months, with high reliability. The predictions for the impurity DP-1 and the Total impurities were more accurate with the PLS model than those obtained with standard linear regression, taking into account that a much larger data set was used for the PLS analysis. Third chapter provides insight into an investigation of possible causes for the acceleration of drug dissolution of a modified-release drug product at stability testing. With an MLR model of up to six months stability results, we found that a decrease of antioxidant Butylhydroxytoluene in the tablet during stability may result in an accelerated dissolution. In addition, a faster dissolution profile can also be influenced by other factors in the starting materials and manufacturing processes of the drug. We further demonstrated the usefulness of the methodology to support the use of the Lean stability approach on a long-term stability study. With the acquired knowledge on drug stability, we designed two optimized long-term stability studies. We have shown that with a reduced long-term design, we can still confirm the 24-month shelf life, given the values of the most critical stability parameter. In the doctoral thesis, we presented the applicability of the DoE methodology and multivariable statistical methods for the evaluation of drug stability. Such an approach for the analysis of all stability data obtained according to the ICH guidelines has not yet been described in the literature. We have shown that the methodology allows us to have a more comprehensive approach to the analysis of a large number of data obtained, compared to classical simple linear regression (LR). Current regulatory guidelines focus mostly on LR and Analysis of Covariance, which include only small amount of data and focus on the stability of the most critical parameter. With multivariable methods we can use all the data available and evaluate influences of the factors and their interactions on the drug stability. The interactions between factors cannot be evaluated with LR. The presented approach can be used to predict drug stability for non-tested factors, to predict results outside the acceptance criteria, and to assess whether stability studies could be reduced without losing the key information on drug stability, that is shelf life determination. |