Napovedovanje vrednosti kriptovalut z globokim učenjem

Autor: Jelenčič, Jakob
Přispěvatelé: Todorovski, Ljupčo
Jazyk: slovinština
Rok vydání: 2019
Předmět:
Popis: Magistrsko delo predstavi inovativen način napovedovanja vrednosti kriptovalute Etherum z uporabo globokega učenja. Dobra napoved je ključna pri konstrukciji uspešne trgovalne strategije, kar je tudi naš dolgoročni cilj. Osredotočimo se na kratkoročno napoved, namreč napovedujemo časovno vrsto šestih 5 minutnih inkrementov kriptovalute Etherum. Napovedovanja smo se lotili z globokim učenjem. Le to je znano po zmožnosti odkrivanja izjemno kompleksnih relacij. Na primer pri sekvenčnem napovedovanju zadnje čase dominira globoko učenje. Uporabili smo tako nadzorovano kot nenadzorovano učenje. Nadzorovano za končno napoved, kjer si pomagamo z principom pozornosti, nenadzorovano učenje pa za redukcijo dimenzije. Obakrat podatkom dodajamo šum, s katerim se borimo proti preprileganju. Osnova našega modela so podatki transakcij iz kripto borze Kraken, katere smo preoblikovali v ustrezno obliko. Za povečanje napovedne moči modela smo uporabili različna glajenja cene in uvedli trgovalne indikatorje. Doseženi rezultati presežejo začetna pričakovanja, sploh, ker je v ekonometriji privzeto, da je kratkoročno napovedovanje težje od dolgoročnega. Velike težave imamo s preprileganjem, katerega pa smo do neke mere uspešno omejili. Za končno napoved uporabimo malce spremenjen princip pozornosti, kateri se je izkazal za optimalnega. The thesis introduces an innovative way of predicting the value of the Etherum cryptocurrency using deep learning. Good forecasting is a key to building a successful trading strategy, which is also our long-term goal. We focus on short-term forecasting, in particular, we forecast the time series of six 5-minute increments of the Etherum price. To build predictive models, we use deep learning which is known for its capacity to capture complex relations in the data. Lately, the vast majority of the state-of-the-art models in sequence-to-sequence predictions have been using deep learning. We employ methods for supervised and unsupervised deep learning. Supervised methods are employed for learning the final predictive model, where we will take advantage of attention mechanism, while unsupervised methods are applied to the task of dimensionality reduction of the input data. For both supervised and unsupervised methods, we add noise to training data to reduce overfitting. The training data is collected from the cryptocurrency broker Kraken. To the transactional data obtained there, we will add different price-smoothing and other trading indicators to increase the predictive performance of the learned models. The achieved results exceeded our initial expectations, especially since econometrics implies that short-term forecasting is more difficult than long-term forecasting. We have managed to contain the big problems with overfitting. The final, best-performing prediction model is obtained using modified attention mechanism.
Databáze: OpenAIRE