Popis: |
V delu obravnavamo samovzorčenje v analizi preživetja. Za to vejo statistike je značilno krnjenje, ki je posebna oblika nepopolnih podatkov. Natančno so opisani štirje različni načini samovzorčenja v analizi preživetja, vključena pa je tudi njihova prilagoditev za delo s sotveganji, kjer nas zanima več različnih vrst dogodkov. Poleg klasične Kaplan-Meier metode samovzorčenje uporabimo tudi pri analizi števila izgubljenih let. Glavni rezultati dela so pridobljeni s pomočjo simulacij, ki so razdeljene na tri sklope, in sicer simulacije na enostavnih podatkih, simulacije na podatkih s sotveganji ter imitacijo resničnih podatkov in delo s populacijskimi tabelami. Razultati nakazujejo, da sta enostavno in pogojno izmed obravnavanih najboljša načina samovzorčenja. Pokažemo tudi, zakaj je uporaba samovzorčenja koristna v praksi. Samovzorčenje pri analizi števila izgubljenih let poleg variabilnosti na vzorcu upošteva tudi variabilnost demografskih spremenljivk, ki se jih uporablja pri delu s populacijskimi tabelami. Brez samovzorčenja so intervali zaupanja pri majhnem številu dogodkov lahko zelo nenavadnih oblik, ki vsebinsko niso smiselni, kar pa lahko v veliki meri odpravimo z uporabo te metode. In this thesis the bootstrap method is introduced into broader eld of survival analysis. In this branch of statistics incomplete data is usually present which is also called censored data. Four different bootstrap methods for survival analysis are gathered and accurately described. Their adjustment for competing risks where different types of events are analysed is also included. Furthermore, the concept of the number of years lost for simple data and data with competing risks is introduced. Results were obtained by three sets of simulations: simulations of simple data, simulations of data with competing risks and imitation of real data. Real data requires working with population tables from which survival of the population is calculated. Results suggest that the simple and the conditional bootstrap are the best bootstrapping methods for censored data. We show why the use of bootstrap is useful in practice. Bootstrapping number of life years lost also takes the variability of the demographic variables into account in addition to the variability of the sample. Demographic variables such as age, year and gender are required when working with population tables. Without bootstrapping condence intervals can be oddly shaped, especially when there are only few events in the sample. This drawback can be improved by using this resampling method. |