Development of a parametric mapping between models of different dimensionality used for modeling and development of proton exchange membrane fuel cells
Autor: | Jeršin, Matevž |
---|---|
Přispěvatelé: | Katrašnik, Tomaž |
Jazyk: | slovinština |
Rok vydání: | 2023 |
Předmět: |
elektrochemical model
udc:004.942:621.352.6:544.4(043.2) modeliranje izgub v modelu anodna kinetika parazitske reakcije gorivna celica katalizator fuel cell parametric mapping between models anode kinetics parametrična preslikava med modeli modelling the losses inside the model parasitic reactions elektrokemijski model catalyst layer |
Popis: | Vodikove gorivne celice s protonsko izmenjevalno membrano trenutno veljajo za eno najbolj obetavnih tehnologij za čisto in učinkovito proizvodnjo električne energije v avtomobilski industriji. Zaradi hitrejšega doseganja rezultatov in cenejšega postopka pri razvijanju novih oziroma testiranju obstoječih sistemov gorivnih celic so vedno pogosteje v uporabi simulacijska orodja. Simulacije na makroskopskem nivoju v 3D simulacijskem okolju se uporablja v razvojnih fazah izdelka. Sistemske simulacije pa se uporablja pri testiranju in optimizaciji celotnih sistemov ter razvijanju kontrolne strategije. Računski čas sistemskih simulacij je zaradi poenostavitev in predpostavk veliko krajši kot pri 3D simulacijah, vendar pa je zaradi istih razlogov tudi natančnost rezultatov manjša. V magistrski nalogi smo izboljšali elektrokemijski model gorivne celice z znižano dimenzionalnostjo, saj smo se približali odzivu 3D simulacij, ki so natančnejše, kar pa pomeni, da smo se s tem približali tudi meritvam dejanskih gorivnih celic. Modelu z znižano dimenzionalnostjo smo dodali modeliranje izgub zaradi anodne kinetike, izgub zaradi parazitskih reakcij, prav tako pa smo naredili preslikavo izgub katalitskega sloja iz 3D simulacijskega okolja. Natančnost modeliranja in preslikave smo na koncu ovrednotili na kompleksnejšem primeru gorivne celice iz 3D programskega okolja. Proton exchange membrane fuel cells are currently considered one of the most promising technologies for clean and efficient electricity generation in the automotive industry. Simulation tools are being frequently used in the development and testing of new or existing fuel cell systems due to the shorter and cheaper process than conventional testing. Computational fluid dynamics simulations in a 3D environment are used in the product development stages, while system simulations are used for testing entire systems, developing control strategies, and optimization. The computational time for system simulations is significantly shorter compared to 3D simulations due to simplifications and assumptions, but this leads to lower accuracy of the result. In this master’s thesis, we improved the electrochemical reduced dimensionality model of the fuel cell, which brought us closer to the response of more accurate 3D simulations and therefore closer to the measurements of actual fuel cells. We incorporated the modelling of losses due to anode kinetics and parasitic reactions into the reduced-dimensionality model, and we also performed a mapping of losses in the catalyst layer from the 3D simulation environment. The accuracy of the modelling and mapping was also evaluated on a more complex case of a fuel cell from the 3D software environment. |
Databáze: | OpenAIRE |
Externí odkaz: |