Popis: |
Rakava obolenja so drugi najpogostejši vzrok smrti v Sloveniji in ostalem razvitem svetu in s tem eden največjih javnozdravstvenih problemov. Tarčna terapija je pristop molekularne medicine za zdravljenje tovrstnih bolezni, ki interferira s specifičnimi celičnimi strukturami, udeleženimi v karcinogenezi. Učinkuje po različnih mehanizmih, med katerimi je tudi ustavitev proliferacije rakavih celic. Slednjo lahko dosežemo z blokado celičnih struktur, ki so udeležene pri delitvi rakavih celic. Mednje spada humani napetostno odvisni kalijev kanalček iz družine 'ether-à-go-go' (hEAG1), ki je odgovoren za regulacijo celičnega cikla. hEAG1 posredno omogoči tvorbo delitvenega vretena v delečih se celicah. Prav tako je v celicah udeležen pri vzdrževanju mirovnega membranskega potenciala. Ekspresija kanalčka je povečana v tumorskih celicah več kot 70% vseh vrst tumorjev. hEAG1 igra pomembno vlogo pri preživetju, rasti in delitvi tumorskih celic. Z njegovo inhibicijo je možno doseči smrt tumorskih celic, zato je pomembna tarča raziskav. Strukturno gledano je kanalček hEAG1 transmembranski tetramerni protein, ki ga fiziološko najdemo predvsem v nevronih. Po zgradbi je zelo soroden kanalčku hERG, ki je odgovoren za repolarizacijo srčnih celic. Selektivna inhibicija kanalčka hEAG1 še vedno predstavlja veliko težavo, saj se večina ligandov veže hkrati tudi na kanalček hERG, s čimer se poveča tveganje za nastanek aritmije. V okviru magistrske naloge smo z metodami računalniške kemije skušali poiskati nove selektivne zaviralce kanalčka hEAG1. Z vizualno preiskavo struktur kanalčkov hEAG1 in hERG ter analizo njunih aminokislinskih zaporedij smo primerjali oba kanalčka. V regijah kanalčkov, v katerih smo ugotovili strukturne razlike, smo ustvarili vezavne žepe in v dva najbolj specifična žepa, ki sta bila lastna kanalčku hEAG1, izvedli virtualno rešetanje s sidranjem. Oba vezavna žepa sta bila del senzorja napetosti v kanalčku. Za najboljših sto spojin zadetkov virtualnega rešetanja v vsakem žepu smo generirali farmakoforne modele. V prvem žepu so bile interakcije izključno hidrofobne, v drugem pa so modeli vsebovali še eno ionsko interakcijo, donor in akceptor vodikove vezi. Proučili smo še specifičnost aminokislin v okolici vezavnih žepov s primerjavo s kanalčkom hERG. Ugotovili smo, da so v prvem žepu specifične tri, v drugem pa dve aminokislini v kanalčku hEAG1. Na osnovi rezultatov sidranja smo zaključili, da spojin zadetkov ni smiselno testirati in vitro zaradi majhne verjetnosti, da bi se v izbrane vezavne žepe vezale z veliko afiniteto in močnimi interakcijami ter imele ustrezno selektivnost. Cancers are the second leading cause of death in Slovenia and other developed countries worldwide, making them one of the biggest public health concerns. Targeted therapy is a form of molecular medicine that interferes with specific cell structures involved in carcinogenesis. It functions through various mechanisms, including inhibition of tumour cell proliferation. The latter is achieved by inhibiting cell structures that are required for cell division. One of these is the human voltage-gated potassium channel of the 'ether-à-go-go' family (hEAG1), which is responsible for regulating the cell cycle. Indirectly, it forms the mitotic spindle. In addition, hEAG1 is involved in the regulation of resting membrane potential in cells. However, the channel is overexpressed in more than 70% of all cancers. The channel is responsible for cell survival, growth, and division, and thus its inhibition leads to cancer cell death. Structurally, the hEAG1 channel is a tetrameric transmembrane protein that is physiologically most abundant in neurons. Its structure is very similar to that of the hERG channel, which repolarizes cardiac cells. Selective inhibition of the hEAG1 channel remains a challenge because most of its ligands bind simultaneously to the hERG channel and additionally increase the risk of cardiac arrhythmias. In this master’s thesis, we used various computational methods to discover new selective hEAG1 channel inhibitors. By visually examining the structures of hEAG1 and hERG channels and analysing their amino acid sequences, we compared the two channels. The regions where we found structural differences were used to form binding pockets in the channels. In the hEAG1, two particularly specific pockets were used to perform virtual screening using molecular docking. Both binding pockets were part of the voltage sensor domain. We then generated pharmacophore models for the top hundred virtual hits. Pocket 1 solely exhibited hydrophobic interactions with the ligands, while pocket 2 offered the possibility of also forming an ionic interaction and hydrogen bonds through a donor and an acceptor. We then examined the specificity of amino acids surrounding the binding pocket by comparing them to the hERG channel. We concluded that there are three specific amino acids in pocket 1 and two specific amino acids in pocket 2 in the hEAG1 channel. Considering the result of molecular docking, we decided that the hit compounds are not worth testing in vitro because it is not likely possible to successfully bind into the pockets with high affinity or strong interactions and achieve a sufficient level of selectivity. |