Popis: |
Uvod: Noge so okončine, ki človeku omogočajo podporo trupa in premikanje. Premikanje pa predstavlja osnovno obliko svobode gibanja, zato je pomembno, da za svoje noge in stopala začnemo primerno skrbeti že v otroštvu. Eden od načinov, s katerim lahko zagotovimo udobje hoje ter celo preprečimo manjše deformacije stopala, je uporaba ustreznih čeveljnih vložkov. Namen: Želeli smo primerjati gumijasta prototipa po meri izdelanih ortopedskih vložkov otroških dimenzij, natisnjenih na dveh različnih 3D tiskalnikih, preveriti ali zagotavljajo ustrezne pritiske, podporo in ali so primerni za uporabo. Metode dela: Z deskriptivno metodo dela smo zbrali podatke potrebne za izdelovalni proces. Podatke smo iskali v znanstvenih člankih, učbenikih in podatkovnih bazah, kot so Google Scholar, PubMed, RUL, na spletnih straneh proizvajalcev in ponudnikov materialov in naprav. Za izdelavo prototipov smo uporabili eksperimentalno metodo dela v laboratoriju za 3D print, na Fakulteti za strojništvo UL ter v zasebnem podjetju za 3D tisk DeInOp v Postojni. Meritve ustreznosti izdelanih prototipov smo izvajali v podjetju OIM ortopedski inženiring v Ljubljani. Rezultati: S pomočjo Sense 2 3D skenerja smo skenirali protetično stopalo s togim gležnjem in oblazinjeno peto, otroških dimenzij. Zajeti 3D model smo uvozili v modelirni program SolidWorks ter s pomočjo modeliranja s telesnimi površinami in Solid telesi po geometriji stopala izdelali model čeveljnega vložka, ki se je popolnoma prilegal dimenzijam skeniranega stopala. Izdelani model smo uvozili v program Simplify 3D, ki je berljiv za naprave kot so 3D tiskalniki. Na voljo smo imeli dva 3D tiskalnika, in sicer Leapfrog Creatr in Ultimaker S3, na katera smo natisnili prototipe čeveljnih vložkov, 5 belih na Leapfrog Creatr, 1 oranžnega na Ultimaker S3. Ustreznost modela smo preverjali z apliciranjem pravokotne vertikalne sile uteži, preko lesene klade in stopala na natisnjene modele čeveljnih vložkov, pod katere smo namestili merilec pritiskov v stopalu. Slednji je preko računalnika izrisal grafični prikaz razporeditve sil po 20 sekundah merjenja. Preverjali smo le razporeditev pritiskov statično, stoje. Razprava in zaključek: Uporaba 3D tehnologije je hitrejša in čistejša v primerjavi s klasičnim načinom izdelave čeveljnih vložkov po meri. Omogoča številne detaljne korekcije modela v programu brez prisotnosti pacienta. Rezultati meritev so pokazali primerno razporeditev pritiskov, z manjšimi odstopanji od modela do modela. Uporaba dotičnih modelov bi bila potrjena, v kolikor bi izvedli tudi dinamične meritve. Introduction: Human feet represent a fundamental form of freedom of movement, so it is important that we take proper care of our feet from childhood. One way to ensure a comfortable gait and even prevent minor foot deformities is to use proper shoe insoles. Purpose: The purpose of this research is to compare rubber prototypes of custom orthopedic insoles made of thermoplastic urethane printed on two different 3D printers. We wanted to verify that they provided adequate pressure and support and were suitable for use. Methods: a literature search provided us with the data we needed for the manufacturing process. Data was collected from scientific articles, textbooks and databases such as Google Scholar, PubMed, RUL, websites of manufacturers and suppliers of materials and devices. In the 3D printing laboratories of the Faculty of Mechanical Engineering UL and 3D printing company DeInOp in Postojna we performed the experimental work, where we printed 6 prototype models of shoe insoles in children's size. We measured the sustainability of the at OIM Orthopedic Engineering in Ljubljana. Results: Using a Sense 2 3D scanner, we scanned a child-sized prosthetic foot with a rigid ankle and a padded heel. The scan was imported into the SolidWorks modeling program, where we created a model of the shoe insert that perfectly matched the dimensions of the scanned foot by modeling with body surfaces and Solid Bodies. The model was then imported into Simplify 3D, which can be read by devices such as 3D printers. Using two 3D printers: Leapfrog Creatr and Ultimaker S3, we printed six (6) prototype shoe insoles: Leapfrog Creatr (five (5) white) and Ultimaker S3 (one (1) orange). The suitability was verified by applying the vertical force of the weight to each printed prototype of the shoe insoles via the wooden block and the prosthetic foot, under which the foot pressure gage was installed. The latter provided us with a graphical representation of the force distribution after 20 seconds of measurement. We checked the distribution of vertical pressure in a standing position. Discussion and conclusion: The use of 3D technology provides a cleaner and faster working environment compared to the traditional way of making custom insoles. It allows a number of precise corrections to be made to the prototypes without the need for the patient to be present. The measurement results showed that the prototypes provided adequate pressure distribution, with little variation between models. The use of prototypes would be confirmed if dynamic measurements were performed. |