Popis: |
V magistrskem delu smo proučevali vpliv mikrostrukture oz. stanja materiala na zvok glasbenih vilic. Izvedli smo postopek preoblikovanja v vročem stanju in spreminjali hitrost ohlajanja ter opazovali vpliv na mikrostrukturo zlitine CuSn20. Merili smo tudi nekatere lastnosti zvoka za opredelitev vpliva različnih postopkov obdelave in posledično drugačne mikrostrukture na zvok glasbenih vilic. Zlitino CuSn20 smo izbrali, ker jo za izdelavo najboljših produktov uporabljajo vsi svetovni proizvajalci činel. Izdelali smo glasbene vilice, saj bi izdelava činel bila preveč zamudna in draga. Opravili smo tlačne preizkuse na napravi Gleeble na testnih vzorcih, nato smo izdelali glasbene vilice. Prve vilice smo izdelali direktno iz ulitka. Druge vilice smo izrezali iz ulitka, ki smo ga po ulivanju in strjevanju valjali pri temperaturi 750 °C in pustili, da se je ohladil na zraku. Tretje vilice pa smo izdelali iz ulitka, ki smo ga prav tako po ulivanju in zaključenem strjevanju valjali pri temperaturi 750 °C in ga takoj za tem kalili v vodi. Pripravili smo še vzorce za preiskavo pod svetlobnim optičnim mikroskopom in elektronskim vrstičnim mikroskopom (SEM). Izdelali smo tudi probe za natezni preizkus, s pomočjo katerega smo izmerili napetost tečenja, natezno trdnost, razteznost in elastični modul. Izmerili smo tudi trdoto vzorcev po metodi Vickers. Na koncu smo izmerili še glavno in prvo harmonično frekvenco in s tem ocenili vpliv stanja mikrostrukture na frekvenco, ki jo oddajajo glasbene vilice. Z enačbo za izračun frekvence glasbenih vilic in izmerjenimi elastičnimi moduli smo izračunali predvidene frekvence in izračunane frekvence primerjali z izmerjenimi. In the master's thesis, we studied how hot processing and different cooling rates affect the microstructure of the CuSn20 alloy. We also measured some sound properties to define the influence of different processing procedures and consequently different microstructure on the sound of tuning forks. We chose the CuSn20 alloy because it is used by all the world's cymbal manufacturers to make the best products in the world. We made tuning forks, because making cymbals would be time-consuming and expensive. We performed pressure tests on the Gleeble device, on test samples, then we made tuning forks. The first fork was made directly from a cast part. The second fork was cut from a cast part that was rolled at 750 °C and air cooled. The third fork was made from a cast part that was also rolled at 750 °C after casting and immediately quenched in water. We also prepared samples for examination under a light optical microscope and a scanning electron microscope (SEM). We also made test probes for the tensile test, with the help of which we measured the yield stress, tensile strength, elongation and elastic modulus. We also measured the hardness of the samples using the Vickers method. Finally, we measured the main and first harmonic frequencies and thus assessed the influence of microstructure on the frequency emitted by the tuning forks. Using the equation for calculating the frequency of the tuning fork and the measured elastic modulus, we calculated the predicted frequencies and compared the calculated frequencies with the measured ones. |