Deformacije ravninskih krivulj

Autor: Turk, Andreja
Přispěvatelé: Pavešić, Petar
Jazyk: slovinština
Rok vydání: 2022
Předmět:
Popis: Če v prostoru razpletemo kakšno debelo, dokaj elastično vrv, lahko na koncu na njej opazimo posledice torzijskih zasukov. Zdi se, kot da bi bila vrv zasukana sama v sebi, zaradi česar ni več lepo ravna. Do tega ne bi prišlo, če bi jo razpletali le v ravnini, na kateri leži, in je nikoli ne zares dvignili s tal. Takega razpletanja bi se v realnem življenju verjetno lotili na ''vrat na nos'' in preplet morda še poslabšali. Morda bi pred koncem že obupali, saj je za večje preplete to precej težja naloga, kot se sprva zdi. Kljub temu jo matematika zna modelirati na preprost, eleganten in domiseln način, ki vrne lepe in zanimive rezultate. Izkaže se, da lahko število potrebnih osnovnih premikov za preoblikovanje dane krivulje v njej regularno homotopno krivuljo omejimo med dve naraščujoči kvadratni meji - funkciji števila samopresečišč začetne krivulje.Vzdolž regularne homotopije lahko z uporabo takih premikov dosežemo, da imajo vse krivulje po poti kvečjemu dve samopresečišči več kot začetna krivulja. Algoritmi, ki jih bomo vpeljali pri dokazovanju rezultatov, podajajo karakterizacijo krivulj z najmanjšim številom samopresečišč v njihovih regularnih homotopskih razredih ter preprost konstrukcijski dokaz Whitneyevega izreka. If you untangle a thick, rather elastic rope in space, you may end up seeing the effects of torsional twists on it. It is as if the rope itself has been twisted, making it no longer straight. This would not be the case if it were untangled only in the surface on which it lies and never really lifted off the ground. In real life, such untangling would probably be done on the spur of the moment and might make the tangle worse. We might have given up before the end, because larger tangles are much harder than they first appear. Nevertheless, mathematics can model it in a simple, elegant and imaginative way that brings beautiful and interesting results. We show, that the maximal number of basic moves, required for passing between any two regularly homotopic planar or spherical curves with at most $n$ crossings, can be restricted within two quadratic bounds - functions of n. The explicit algorithm, which gives quadratic upper bound, chooses the path, along which all curves have at most n + 2 crossings. Furthermore, it offers a characterization of curves with minimal number of crossings in their homotopy class as well as a simple constructive proof of Whitney's theorem.
Databáze: OpenAIRE