Popis: |
Izražanje sintetičnih genov v gostiteljskem organizmu zahteva prilagojeno rabo kodonov za višje izkoristke izolacije. Kljub temu da zaporedje kodonov vpliva na zvijanje proteinov, dosedanji algoritmi za optimizacijo rabe kodonov ne upoštevajo strukture proteina. S simulacijo premikanja ribosomov po mRNA lahko za dano zaporedje kodonov napovemo čas translacije na nivoju kodona. Razlaga upočasnjene translacije na podlagi strukture proteina omo-goča napoved časa translacije za poljuben protein. Pokazali smo, da zastajanje ribosomov na mRNA povzročajo območja kodonov s povprečno višjim časom translacije. Ta so okvirno dolga 7 kodonov in povzročijo zastajanje še vsaj dveh ribosomov navzgor. Del mest zastojev ribosomov sovpada s povezovalnimi regijami, mi pa smo odkrili dodatna zastajanja, povezana z izhodom ostankov hidrofobnega jedra iz ribosoma. Iz značilk simuliranega kotranslacijskega zvijanja smo uspešno ustvarili prvi napovedni model časa translacije iz strukture proteina. Napoved veznega člena med strukturo proteina in zaporedjem kodonov omogoča optimizacijo rabe kodonov na osnovi strukture, česar dosedanje metode ne upoštevajo. Algoritem je ključnega pomena za učinkovito izražanje rekombinantnih in de novo proteinov, npr. bioloških zdravil, kjer poleg visokega izkoristka želimo pravilno zvit protein, ki je varen za uporabo. Synthetic gene expression in a host organism requires adjusted codon usage for higher isolation yields. Even though codon sequence influences protein folding, current codon usage optimization algorithms do not consider protein structure. By simulating ribosome movement on mRNA for a given codon sequence, we can predict translation time with a precision of a codon. Explanation of slowed translation through protein structure enables us to predict translation time for an arbitrary protein. We showed that ribosomal stalling on mRNA is driven by codon regions with higher average translation time. These are approximately 7 codons wide and result in stalling of at least two other ribosomes upstream. A portion of ribosome stalling sites overlaps with linking regions, while we discovered more stalling sites related to hydrophobic core residues exiting the ribosome. Utilizing features from simulated co-translational folding, we successfully created the first predictive model for translation time using protein structure. Predicting the connection between protein structure and codon sequence enables codon usage optimization based on structure, which is not considered in current methods. The algorithm is of key importance for the efficient expression of recombinant and de novo proteins, i.e. biological medicinal products, where high yield must be accompanied by correct protein folding for safe usage. |