Popis: |
Kljub velikem tehnološkem napredku, smo za učinkovito uporabo računalnikov še vedno primorani uporabljati enostavne načine vnašanja ukazov. Ko pa se prestavimo v svet mobilnih naprav nivo interakcije sunkovito zraste. Veliko uporabnikov mobilnih naprav bi želelo uporabljati zvočne ukaze tako za preprosta (ukaz za klicanje), kot tudi za zahtevnejša opravila, kot je spletno iskanje. Za razpoznavanje in izvajanje takih ukazov pa je potrebno veliko število učnih primerov na katerih se razpoznavalnik uči in izboljšuje. Temu dejstvu se z diplomsko nalogo skušamo izogniti. Tako je bil cilj diplomske naloge izdelava mobilne aplikacije, ki zna razpoznati govor brez večje množice učnih primerov in bo delovala povsem samostojno, brez spletne povezave. Za izdelavo razpoznavalnika je bila uporabljena metoda časovnega izkrivljanja. Opravljena pa je bila tudi analiza delovanja, kje smo primerjali točnost in hitrost razpoznavanja. Na podlagi rezultatov analize smo nato z optimizacijo razpoznavanja pohitrili delovanje razpoznavalnika in ob tem ohranili njegovo uspešnost. Despite big technological advancements, we are still bound to use keyboard and mouse as default computer peripheral. When using mobile devices, the scope of possible interactions with a device quickly grows. Many mobile device users would like to use voice commands for both simple (voice dial), as well as for demanding tasks such as web search. Usually, it takes a number of learning examples on which speech recognizer learns and improves. In this thesis, we are trying to avoid this necessity. The main goal of this thesis is the development of a mobile application that recognizes speech without a demand for a substantial number of learning examples and which will operate completely independently, without active internet connection. The method used for speech recognition system in this thesis is well-known Dynamic Time Warping method. Analysis, where we compared accuracy and speed of recognition, was carried out. Based on the results of the analysis we have successfully proposed a few steps to optimize the speed of our speech recognition application and preserve its accuracy. |