Subspace Mapping of Noisy Text Documents

Autor: Soto, Axel Juan, Strickert, Marc, Vazquez, Gustavo Esteban, Milios, Evangelos
Jazyk: angličtina
Rok vydání: 2011
Předmět:
DOI: 10.1007/978-3-642-21043-3_45?LI=true
Popis: Subspace mapping methods aim at projecting high-dimensional data into a subspace where a specific objective function is optimized. Such dimension reduction allows the removal of collinear and irrelevant variables for creating informative visualizations and task-related data spaces. These specific and generally de-noised subspaces spaces enable machine learning methods to work more eficiently. We present a new and general subspace mapping method, Correlative Matrix Mapping (CMM), and evaluate its abilities for category-driven text organization by assessing neighborhood preservation, class coherence, and classification. This approach is evaluated for the challenging task of processing short and noisy documents. Fil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Dalhousie University Halifax; Canadá Fil: Strickert, Marc. Siegen University; Alemania Fil: Vazquez, Gustavo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina Fil: Milios, Evangelos. Dalhousie University Halifax; Canadá
Databáze: OpenAIRE