Popis: |
Aquesta tesi se centra en la detecció d'activitat humana a partir de dispositius mòbils i portàtils. Escollim Hexiwear com el nostre dispositiu portàtil per recollir les dades de l'activitat humana diària, com ara l'acceleració de tres eixos, l'orientació de tres eixos, la velocitat angular i la posició de tres eixos. Aquest projecte consisteix en el desenvolupament d'una aplicació per a telèfon intel·ligent per a l'usuari en l'anàlisi de dades, la visualització de dades i la generació de resultats. L'objectiu és construir un prototip obert i modular que pugui servir d'exemple o plantilla per al desenvolupament d'altres projectes. L'aplicació està desenvolupada amb JAVA per Android Studio. L'aplicació permet a l'usuari connectar-se amb el dispositiu portàtil i reconèixer la seva activitat diària. Per a l'algorisme de classificació de l'activitat diària, hem utilitzat dos mètodes diferents, el primer és mitjançant l'establiment de diferents llindars, el segon és mitjançant l'aprenentatge automàtic. L'aplicació es va provar i els resultats van ser satisfactoris, ja que l'aplicació generada va funcionar correctament. Malgrat les òbvies limitacions, la feina feta és un punt de partida per a desenvolupaments futurs。 Esta tesis se centra en la detección de actividad humana basada en dispositivos móviles y portátiles. Elegimos Hexiwear como nuestro dispositivo portátil para recopilar los datos de la actividad humana diaria, como la aceleración de tres ejes, la orientación de tres ejes, la velocidad angular de tres ejes y la posición. Este proyecto implica la creación de una aplicación de teléfono para usuarios de análisis de datos, visualización de datos y generación de resultados. El objetivo es construir un prototipo abierto y modular que pueda servir como ejemplo o plantilla para el desarrollo de otros proyectos. La aplicación está desarrollada usando JAVA por Android Studio. La aplicación permite al usuario conectarse con el dispositivo portátil y reconocer su actividad diaria. Para el algoritmo de clasificación de la actividad diaria, usamos dos métodos diferentes, el primero es establecer umbrales diferentes, el segundo es usar el aprendizaje automático. La aplicación fue probada y los resultados fueron satisfactorios, ya que la aplicación generada funcionó correctamente. A pesar de las limitaciones evidentes, el trabajo realizado es un punto de partida para futuros desarrollos. This thesis focuses on human activity detection based on mobile and wearable devices. We choose Hexiwear as our wearable device to collect the human daily activity data, like tri-axis acceleration, tri-axis orientation, tri-axis angular velocity and position. This project consists in the development of a smartphone application for the user in data analysis, data visualization and generates results. The objective is to build an open and modular prototype that can serve as an example or template for the development of other projects. The application is developed using JAVA by Android Studio. The application allows the user to connect with the wearable device, and recognize their daily activity. For the daily activity classify algorithm, we used two different methods, the first one is by set different thresholds, the second is by using the machine learning. The application was tested and the results were satisfactory, as the generated application worked properly. Despite the obvious limitations, the work done is a starting point for future developments. |