An accurate approach to simulate friction stir welding processes using adaptive formulation refinement

Autor: Venghaus, Henning, Chiumenti, Michele, Baiges Aznar, Joan, Juhre, Daniel, Castañar Pérez, Inocencio
Přispěvatelé: Universitat Politècnica de Catalunya. Doctorat en Anàlisi Estructural, Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental, Universitat Politècnica de Catalunya. Doctorat en Enginyeria Civil, Universitat Politècnica de Catalunya. MMCE - Mecànica de Medis Continus i Estructures, Universitat Politècnica de Catalunya. ANiComp - Anàlisi Numèrica i Computació Científica
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Popis: A novel Adaptive Formulation Refinement (AFR) strategy for Friction Stir Welding (FSW) problems is presented. In FSW, the accurate computation of strains is crucial to correctly predict the highly non-linear material behavior in the stir zone. Based on a posteriori error estimation, AFR switches between two mixed formulations depending on the required accuracy in the different regions of the domain. The higher accuracy formulation is used in the thermo-mechanically affected zone (TMAZ), while a computationally cheaper formulation is used elsewhere. AFR adds to the well-known - (mesh size), - (polynomial degree) and -refinement (spatial distribution) approaches. The considered mixed formulations are the velocity/pressure () and the velocity/pressure/deviatoric strain rate () formulations—both suitable for isochoric material flow. By applying the AFR strategy, the use of linear elements is preserved, the incompressible flow of the material is captured correctly and any remeshing is avoided. Furthermore, the treatment of the interface between refined and unrefined subdomains is straightforward due to the compatibility of variable fields and lack of hanging nodes. The accuracy of the results obtained from the AFR method compares favorably with reference results of the non-adaptive formulation. At the same time, faster build and solve times are achieved. H. Venghaus acknowledges the support by Cimne, a Severo Ochoa Centre of Excellence (2019–2023) under the grant [CEX2018-000797-S], funded by the Research Agency of the Spanish State (AEI, [10.13039/501100011033]), the support from the PriMuS Project (Printing pattern based and MultiScale enhanced performance analysis of advanced Additive Manufacturing components, [PID2020-115575RB-I00]) through the Research Agency of the Spanish State (AEI, [10.13039/501100011033]) as well as the KYKLOS 4.0 project, which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement [No 872570]. I. Castanar gratefully acknowledges the support received from the Agència de Gestió d’Ajut i de Recerca through the predoctoral FI grant 2019-FI-B-00649.
Databáze: OpenAIRE