Microscopic superfluidity in 4He clusters stirred by a rotating impurity molecule

Autor: Wairegi, Angeline, Gamboa, Antonio, Burbanks, Andrew, Lee, Ernestine A., Farrelly, David
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Wairegi, A, Gamboa, A, Burbanks, A, Lee, E A & Farrelly, D 2014, ' Microscopic superfluidity in 4 He clusters stirred by a rotating impurity molecule ', Physical Review Letters, vol. 112, no. 14, 143401 . https://doi.org/10.1103/PhysRevLett.112.143401
DOI: 10.1103/PhysRevLett.112.143401
Popis: The effective moment of inertia of a CO impurity molecule in 4HeN and p−(H2)N solvent clusters initially increases with N but then commences a nonclassical decrease at N=4 (4He) or N=6 (p−H2). This suggests molecule-solvent decoupling and a transition to microscopic superfluidity. However, the quantum decoupling mechanism has not been elucidated. To understand the decoupling mechanism, a one-dimensional model is introduced in which the 4He atoms are confined to a ring. This model captures the physics and shows that decoupling happens primarily because of bosonic solvent-solvent repulsion. Quantum Monte Carlo and basis set calculations suggest that the system can be modeled as a stirred Tonks-Girardeau gas. This allows the N-particle time-dependent Schrödinger equation to be solved directly. Computations of the integrated particle current reveal a threshold for stirring and current generation, indicative of superfluidity.
Databáze: OpenAIRE