Two families of strongly walk regular graphs from three-weight codes over Z 4 *
Autor: | Shi, Minjia, Xu, Wenjun, Cheng, Yue, Wu, Huazhang, Solé, Patrick |
---|---|
Přispěvatelé: | Anhui University [Hefei], Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: |
Projective codes
Gray map Strongly walk-regular graphs [INFO.INFO-IT]Computer Science [cs]/Information Theory [cs.IT] [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] Three-weight codes Projective codes Strongly walk-regular graphs Gray map Three-weight codes Coset graph AMS Classification: 94B 05 05E 30 |
Zdroj: | Contributions to Discrete Mathematics Contributions to Discrete Mathematics, 2023 |
ISSN: | 1715-0868 |
Popis: | A necessary condition for a Z 4-code to be a three-weight code for the Lee weight is given. Two special constructions of three-weight codes over Z 4 are derived. The coset graphs of their duals are shown to be strongly 3-walk-regular, a generalization of strongly regular graphs. |
Databáze: | OpenAIRE |
Externí odkaz: |