Popis: |
The aim of the study is to allocate in the content of teaching mathematics those elements, those kinds of mathematical cognitive activities that are metasubject character, which are the basis for the formation of cognitive learning activities, as a means to study not only of mathematical objects, but some objects of other sciences. Methods. Research is based on a system-structural and activity-based approaches; literature analysis, theoretical research and experimental work. Results. Among of metasubject results of studying mathematics, the following types of mathematical schemes of thinking are identified: logical, algorithmic, combinatory, figurative-geometrical, stochastic. The characteristic is given; the specifics of each type of mathematical structures of thinking are described. The main means of the formation of such schemes is the decision of the respective types of non-standard tasks. Scientific novelty. The author gives a theoretical justification of the role of mathematical thinking schemes as metasubject results of training and points out funds for their formation in educational activity. Practical significance. The perspective directions of accents change in the content of training of mathematics directed on increase in training of a role of mathematical schemes of thinking as bases of formation of universal informative cognitive actions are emphasized Цель статьи – выделить в содержании обучения математики те элементы и виды познавательной деятельности, которые носят метапредметный характер и являются основой для формирования универсальных учебных действий, а также средствами для исследования не только математических объектов, но и объектов других наук. Методология и методики исследования. Исследование базируется на системно-структурном и деятельностном подходах. Использовались анализ литературы и опытно-экспериментальная работа. Результаты. Среди метапредметных результатов обучения математике выделены следующие виды математических схем мышления: логические, алгоритмические, комбинаторные, образно-геометрические, стохастические. Дана характеристика и описана специфика каждого вида математических структур мышления. По мнению автора, главным средством формирования таких схем является решение соответствующих типов нестандартных задач. Научная новизна. Теоретически обоснована роль математических схем мышления как метапредметных результатов обучения; показаны варианты их формирования в учебной деятельности. Практическая значимость. Выделены перспективные направления изменения акцентов в содержании обучения математике, направленные на повышение в обучении роли математических схем мышления как основы формирования универсальных познавательных учебных действий |