Nekilnojamojo turto vertės nustatymas pasitelkiant mašininio mokymosi technikas

Autor: Adomavičius, Simonas
Přispěvatelé: Vaičiukynas, Evaldas, Alzbutas, Robertas
Jazyk: litevština
Rok vydání: 2022
Předmět:
Popis: Šiame darbe yra nagrinėjami dirbtinio intelekto metodai, siekiant atlikti tikslesnį Vilniaus mieste ir rajone parduodamų butų vertinimą. Darbe yra naudojama viešai prieinama informacija apie parduodamus butus iš Aruodas.lt kuri yra surenkama automatizuotu būdu. Informacija kuri yra renkama susideda iš tekstinės – parduodamo buto skelbimo aprašymas, nuotraukų – skelbime patalpintos nuotraukos, bei bendrinė informacija pateikiama skelbime – kaina, vietovė, buto plotas, buto ypatumai ir kita. NT vertės nustatymo uždaviniuose nuolat pasitaikanti problema yra mažai vertės turinčių objektų pervertinimas ir / ar didelę vertę turinčių objektų nepakankamas vertinimas. Sprendžiant regresijos uždavinius, mes dažnai turime duomenų apie daugumą objektų, tačiau visuomet per mažai itin pigių, bei itin prabangių. Dėl šios priežasties vertinti daugumos objektų vertę yra lengviau, nei pigių ar brangių. Vis dėl to, tobulėjančių dirbtinio intelekto metodų kontekste bei informacijai tampant vis lengviau pasiekiamai, mūsų galimybės geriau įvertinti šio tipo būstus tampa vis didesnės. Darbe tikimasi, jog informacija esanti nuotraukose ir tekste leis atlikti geresnę būsto vertės prognozė geriau vertinant tiek pigius, tiek brangius butus. Pirmojoje darbo dalyje atliekama literatūros apžvalga, kitų autorių darbų nagrinėjusių dirbtinio intelekto panaudojimo galimybes būsto vertės prognozavimui. Antroje dalyje aprašomi tyrimo metodai, kurie bus taikomi darbe ir pristatoma informacijos rinkimo strategija. Trečiojoje dalyje yra atliekamas tyrimas, kurio metu iš pradžių yra atliekama požymių inžinerija, o vėliau modelių apmokymas bei optimizavimas. Galiausiai yra pristatomi geriausio modelio su 13.74 MAPE, ir 33,307 RMSE rezultatai, bei pateikiamos išvados.
In this work, the methods of artificial intelligence are analyzed in order to perform a more accurate value prediction of the apartments sold in Vilnius city and district. The work uses publicly available information about apartments put for sale on Aruodas.lt, which is collected in an automated way. The information that is collected consists of a text – description of the apartment for sale, photos – photos placed in the ad, and general information provided in the ad – price, location, apartment size, various features of the apartment and more. A constant problem in real estate valuation is the overvaluation of low-value objects and / or underestimation of high-value objects. When dealing with regression problems, we often have data on most average objects, but never enough of cheap and luxurious ones. For this reason, estimating the value of most properties is easier than cheap or expensive. However, as the methods of artificial intelligence evolve and information becomes more and more available, our ability to better value this type of housing increases. It is hoped that the information contained in the photos and text will allow for a better forecast of the value of housing by better valuing both cheap and expensive apartments. In the first part of the work, a review of the literature is performed where other authors have examined the possibilities of using artificial intelligence to predict the value of housing. The second part describes the research methods that will be applied in the work and presents the information gathering strategy. In the third part, a study is conducted, during which feature engineering is performed first, followed by model training and optimization. Finally, the results of the best model with 13.74 MAPE and 33,307 RMSE are presented along with the conclusions of the work.
Databáze: OpenAIRE