Study of ̄B0 → D + h − ðh = K=πÞ decays at Belle

Autor: Waheed, E., Urquijo, P., Behera, P., Lai, Y.-T., Lange, J. S., Laurenza, M., Lee, S. C., Li, J., Li, L. K., Li, Y. B., Li Gioi, L., Libby, J., Lieret, K., Belous, K., Liventsev, D., MacQueen, C., Masuda, M., Matsuda, T., Merola, M., Metzner, F., Miyabayashi, K., Mizuk, R., Mohanty, G. B., Mussa, R., Bennett, J., Nakao, M., Natochii, A., Nayak, L., Nayak, M., Niiyama, M., Nisar, N. K., Nishida, S., Ogawa, S., Ono, H., Oskin, P., Bessner, M., Pakhlov, P., Pakhlova, G., Pang, T., Park, H., Park, S.-H., Passeri, A., Patra, S., Paul, S., Pedlar, T. K., Pestotnik, R., Bhardwaj, V., Piilonen, L. E., Podobnik, T., Popov, V., Prencipe, E., Prim, M. T., Röhrken, M., Rostomyan, A., Rout, N., Russo, G., Sahoo, D., Bhuyan, B., Sandilya, S., Santelj, L., Sanuki, T., Savinov, V., Schnell, G., Schwanda, C., Schwartz, A. J., Seino, Y., Senyo, K., Sevior, M. E., Bilka, T., Shapkin, M., Sharma, C., Shen, C. P., Shiu, J.-G., Simon, F., Singh, J. B., Sokolov, A., Solovieva, E., Starič, M., Stottler, Z. S., Biswal, J., Strube, J. F., Sumihama, M., Sumiyoshi, T., Sutcliffe, W., Takizawa, M., Tamponi, U., Tanida, K., Tenchini, F., Trabelsi, K., Uchida, M., Bobrov, A., Uglov, T., Unno, Y., Uno, K., Uno, S., Usov, Y., Vahsen, S. E., Van Tonder, R., Varner, G., Varvell, K. E., Vinokurova, A., Bodrov, D., Wang, C. H., Wang, E., Wang, M.-Z., Wang, P., Wang, X. L., Wiechczynski, J., Won, E., Yabsley, B. D., Yan, W., Yang, S. B., Adachi, I., Borah, J., Ye, H., Yelton, J., Yin, J. H., Yusa, Y., Zhang, Z. P., Zhilich, V., Zhukova, V., Bozek, A., Bračko, M., Branchini, P., Browder, T. E., Budano, A., Campajola, M., Červenkov, D., Chang, M.-C., Chang, P., Aihara, H., Chen, A., Cheon, B. G., Chilikin, K., Cho, H. E., Cho, K., Cho, S.-J., Choi, S.-K., Choi, Y., Choudhury, S., Cinabro, D., Al Said, S., Cunliffe, S., Das, S., De Nardo, G., De Pietro, G., Dhamija, R., Di Capua, F., Doležal, Z., Dong, T. V., Epifanov, D., Ferber, T., Asner, D. M., Ferlewicz, D., Fulsom, B. G., Garg, R., Gaur, V., Gabyshev, N., Giri, A., Goldenzweig, P., Golob, B., Graziani, E., Gu, T., Atmacan, H., Guan, Y., Gudkova, K., Hadjivasiliou, C., Halder, S., Hartbrich, O., Hayasaka, K., Hayashii, H., Hou, W.-S., Hsu, C.-L., Iijima, T., Aulchenko, V., Inami, K., Ishikawa, A., Itoh, R., Iwasaki, M., Iwasaki, Y., Jacobs, W. W., Jia, S., Jin, Y., Joo, K. K., Kaliyar, A. B., Aushev, T., Kang, K. H., Kichimi, H., Kim, C. H., Kim, D. Y., Kim, K.-H., Kim, K. T., Kim, Y.-K., Kinoshita, K., Kodyš, P., Konno, T., Bahinipati, S., Korobov, A., Korpar, S., Kovalenko, E., Križan, P., Kroeger, R., Krokovny, P., Kumar, M., Kumar, R., Kumara, K., Kwon, Y.-J.
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Physical review / D 105(1), 012003 (2022). doi:10.1103/PhysRevD.105.012003
Popis: We present a measurement of the branching fractions of the Cabibbo favored ̄B0 → Dþπ− and theCabibbo suppressed ̄B0 → DþK− decays. We find Bð ̄B0 → Dþπ−Þ ¼ ð2.48 0.01 0.09 0.04Þ ×10−3 and Bð ̄B0 → DþK−Þ ¼ ð2.03 0.05 0.07 0.03Þ × 10−4 decays, where the first uncertainty isstatistical, the second is systematic, and the third uncertainty is due to the Dþ → K−πþπþ branchingfraction. The ratio of branching fractions of ̄B0 → DþK− and ̄B0 → Dþπ− is measured to beR D ¼ ½8.19 0.20ðstatÞ 0.23ðsystފ × 10−2. These measurements are performed using the full Belledataset, which corresponds to 772 × 10 6B ̄B pairs and use the Belle II software framework for data analysis.
Databáze: OpenAIRE