The Ramanujan Journal / New inequalities for p(n) and logp(n)

Autor: Radu, Christian-Silviu, Banerjee, Koustav, Paule, Peter, Zeng, WenHuan
Jazyk: angličtina
Rok vydání: 2022
Předmět:
DOI: 10.1007/s11139-022-00653-6
Popis: Let p(n) denote the number of partitions of n. A new infinite family of inequalities for p(n) is presented. This generalizes a result by William Chen et al. From this infinite family, another infinite family of inequalities for logp(n) is derived. As an application of the latter family one, for instance obtains that for n≥120, p(n)2>(1+π24−−√n3/2−1n2)p(n−1)p(n+1). Version of record
Databáze: OpenAIRE