Autor: |
Aguilo, M., Martinez, J., Rodenas, A., Stake, A, Traveria, M., Solis, J., Osellame, R., Tanaka, T., Berton, B., Kimura, S., Rehfeld, N., Diaz, F. |
Přispěvatelé: |
Física i Cristal.lografia de Materials, Física i Cristal·lografia de Nanomaterials, Química Física i Inorgànica, Universitat Rovira i Virgili |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Advanced Materials Technologies |
DOI: |
10.1002/admt.201700085 |
Popis: |
Filiació URV: SI State-of-the-art ultrahigh-sensitivity photonic sensing schemes rely on exposing the evanescent field of tightly confined light to the environment. Yet this renders an inherent fragility to the device, and since adding a protective layer disables light exposure, there exists a technology gap for highly-sensitive harsh-environment resistant surface photonic sensors. Here we report a novel type of mid-infrared waveguide sensors which exploit vibrational resonance-driven directional coupling effects besides absorption, with optical sensing elements that can be buried (~1-10 μm) and resist systematic exposure to industrial environments without failure. A harshenvironment resistant, fiber-coupled, surface sensor for monitoring the structural phase of water (liquid-supercooled-solid), as well as the type of ice microstructure (clearrime), is shown. We demonstrate how this type of sensor can be designed to detect ice layers with nanometric (~100 nm) to microscopic (~30 μm or higher) thicknesses, and report the first experimental tests both in optical laboratory and in icing wind tunnel inflight aircraft simulation tests. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|