Data Fault Detection for Digital Twin Learning Action Decision of a Wind Turbine

Autor: Chicaiza Salazar, William David, Rodríguez Sánchez, Fabio, Sánchez, Adolfo J., Escaño González, Juan Manuel
Přispěvatelé: Universidad de Sevilla. Departamento de Matemática Aplicada II (ETSI), Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla. TEP116: Automática y Robótica Industrial, Spanish Ministry of Science, Innovation and Universities under grant PID2019- 104149RB-I00, European Union’s Horizon 2020 grant agreement no. 958339
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Popis: This paper presents the design of a classifier of variable failures in a wind turbine system. The classifier is based on a structure formed by several TS fuzzy inference systems, with projections of the data onto components of a principal component analysis. The classifier is part of a discrepancy evaluator for triggering the learning mechanism of the digital twin of the wind turbine.
Databáze: OpenAIRE