When and where the Orlicz and Luxemburg (quasi-) norms are equivalent?

Autor: Campo Acosta, Ricardo del, Fernández Carrión, Antonio, Mayoral Masa, Fernando, Naranjo Naranjo, Francisco José, Sánchez Pérez, Enrique A.
Přispěvatelé: Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII), Universidad de Sevilla. Departamento de Matemática Aplicada II (ETSI), Universidad de Sevilla. FQM-133: Investigación en Análisis Funcional, Junta de Andalucía, Ministerio de Ciencia, Innovación y Universidades (MICINN). España
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Popis: We study the equivalence between the Orlicz and Luxemburg (quasi-) norms in the context of the generalized Orlicz spaces associated to an N-function Φ and a (quasi-) Banach function space X over a positive finite measure μ. We show that the Orlicz and the Luxemburg spaces do not coincide in general, and also that under mild requirements (σ-Fatou property, strictly monotone renorming) the coincidence holds. We use as a technical tool the classes LΦ w(m), LΦ(m) and LΦ( m ) of Orlicz spaces of scalar integrable functions with respect to a Banach space-valued countably additive vector measure m, providing also some new results on these spaces. Junta de Andalucía FQM-133 Ministerio de Ciencia, Innovación y Universidades MTM2016-77054-C2-1-P2
Databáze: OpenAIRE