Seleção ótima de portfólio em renda fixa: combinações de estruturas a termo da taxa de juros e fatores macroeconômicos

Autor: Gimenes, Lucas Dreves
Přispěvatelé: Escolas::EAESP, Schiozer, Rafael Felipe, Milan, Pedro Luiz Albertin Bono, Sampaio, Joelson Oliveira, Eid Júnior, William
Jazyk: portugalština
Rok vydání: 2019
Předmět:
Zdroj: Repositório Institucional do FGV (FGV Repositório Digital)
Fundação Getulio Vargas (FGV)
instacron:FGV
Popis: O estudo de portfólios ótimos em termos de média e variância de Markowitz (1952) são amplamente utilizados para formação de portfólios em renda variável. No entanto, são pouco empregados para renda fixa. Korn e Koziol (2006) apresentam como um dos motivos para tal fato a característica mutante dos títulos ao longo do tempo. Sugerem que, para mitigar essa questão, sejam utilizados modelos de estrutura a termo de taxas de juros. Para Christensen, Diebold e Rudebusch (2011), a precificação de ativos, a alocação de portfólio e o gerenciamento de riscos são incumbências fundamentais nos mercados financeiros. Para títulos de renda fixa, a modelagem da estrutura a termo das taxas de juros (ETTJ) com maior eficiência tende a gerar melhores precificações, retornos de portfólios superiores e gerenciamento de risco satisfatórios. Concepção similar também pode ser encontrada em Bolder (2015). Ainda, segundo Christensen, Diebold e Rudebusch (2011), os modelos de estrutura a termo das taxas de juros baseados em Nelson e Siegel (1987) apresentam um sucesso notável em ajustar e prever as curvas de juros. Para o caso brasileiro, Almeida (2009) apresenta uma metodologia superior baseada em modelos Nelson-Siegel-Svensson, demonstrando que um fator a mais para curvatura gera melhor ajuste e previsão. As variáveis macrofinanceiras como fatores de potencialização para melhores previsões ganharam força após os trabalhos de Ang e Piazzesi (2003) e Diebold, Piazzesi e Rudebusch (2005), sendo que Rudebusch e Wu (2008) sugerem como aprimoramento a importância de se analisar variáveis fiscais na qualidade de meios para um melhor ajuste das taxas ajustadas ou previstas. Para o caso brasileiro, Almeida e Faria (2014) demonstram a importância da inclusão de fatores macroeconômicos para previsão da curva de juros brasileira. Vieira et al. (2017) exploram os ganhos com a inclusão de variáveis que tentam captar expectativas. Assim, a inclusão de fatores macroeconômicos na estimação da ETTJ passou a ser importante, tanto para formadores de política monetária, quanto para possuidores de dívida, na medida que auxilia na tomada de decisão com o intuito de maximização de lucros. Dessa forma, o presente trabalho une os pontos acima e busca estudar a importância de variáveis de expectativas macroeconômicas, com foco em variáveis de expectativas fiscais como possíveis instrumentos para melhorar o ajuste e previsão de curvas de juros estimadas via Nelson Siegel Svensson e posterior utilização em portfólios ótimos de renda fixa. Os dados utilizados são os futuros de DI com maturidades de 1, 2, 3, 4, 5 e 6 meses unidos às de 1, 1.5, 2, 2.5, 3, 4, 5, 7 e 10 anos. Os principais resultados encontrados sugerem que, para o caso brasileiro, existe relevância em variáveis fiscais de expectativa futura em conjunto com expectativas de produto e inflação para uma melhor previsão das curvas de juros. E que estratégias de portfólios ótimos (média variância) em renda fixa, com a utilização de dados previstos para o futuro comportamento da taxa de juros podem levar a retornos consistentes em termos absolutos, ainda melhores em Índice de Sharpe e tais resultados se mantém comparativamente à indústria de fundos de Renda Fixa brasileira. Markowitz's (1952) study of optimal mean variance portfolios are widely used for portfolio formation in equities. However, they are little employed for fixed income. Korn and Koziol (2006) present that one of the reasons for this fact is the changing characteristic of titles over time. They suggest that, to mitigate this issue, term interest rate structure models should be used. For Christensen, Diebold and Rudebusch (2011), asset pricing, portfolio allocation and risk management are key tasks in the financial markets. For fixed income securities, the more efficient term structure modeling of interest rates (ETTJ) tends to yield better pricing, higher portfolio returns and satisfactory risk management. Similar design can also be found in Bolder (2015). Also, according to Christensen, Diebold and Rudebusch (2011), the term structure models of interest rates based on Nelson and Siegel (1987) are remarkably successful in adjusting and forecasting the yield curves. For the Brazilian case, Almeida (2009) presents a superior methodology based on Nelson-Siegel-Svensson models, demonstrating that one more factor for curvature generates better fit and prediction. Macroeconomic variables as potentialization factors for better predictions gained strength after the work of Ang and Piazzesi (2003) and Diebold, Piazzesi and Rudebusch (2005). Rudebusch and Wu (2008) suggest as an improvement, the importance of analyzing fiscal variables as a way of better adjusting or forecasted rates. For the Brazilian case, Almeida and Faria (2014) demonstrate the importance of including macroeconomic factors to forecast the Brazilian yield curve. Vieira et al. (2017) explore the gains by including variables that try to capture expectations. Thus, the inclusion of macroeconomic factors in the ETTJ estimation has become important for both monetary policy makers and debt holders as it assists in decision making with a view to maximizing profits. Thus, the present paper joins the above points and seeks to study the importance of macroeconomic expectation variables, focusing on fiscal expectation variables as possible instruments to improve the adjustment and forecasting of estimated yield curves via Nelson Siegel Svensson and subsequent use in great fixed income portfolios. The data used are DI futures with maturities of 1, 2, 3, 4, 5 and 6 months combined with those of 1, 1.5, 2, 2.5, 3, 4, 5, 7 and 10 years. The main results suggest that, for the Brazilian case, there is relevance in future expectation fiscal variables together with product and inflation expectations for a better forecast of the yield curves. And that optimal portfolio strategies (mean variance) in fixed income, using forecasted data for future interest rate behavior, can lead to consistent, even better absolute returns on the Sharpe Index, and these results hold up compared to Brazilian Fixed Income fund industry.
Databáze: OpenAIRE