Immobilization of laccase in bacterial nanocelulose: optimization and evaluation of the biotransformation of phenolic compounds
Autor: | Reis, Hélen Cristina Oliveira dos |
---|---|
Přispěvatelé: | Couto, Gustavo Henrique, Maciel, Giselle Maria, Inaba, Juliana, Brugnari, Tatiane |
Jazyk: | portugalština |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) Universidade Tecnológica Federal do Paraná (UTFPR) instacron:UTFPR |
Popis: | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) O tratamento biológico pela utilização de enzimas no processo de biorremediação pode ser vantajoso por ser uma alternativa eficiente, econômica e ambientalmente correta. Dentre os compostos de interesse, pode-se citar os compostos fenólicos, pois, a problemática envolvendo estes compostos deve-se a sua baixa degradabilidade e elevada toxicidade no meio ambiente. Quanto as enzimas relacionadas a biorremediação, destaca-se a lacase que pode degradar compostos recalcitrantes necessitando basicamente de oxigênio para que o processo ocorra. Este trabalho teve como objetivo imobilizar uma lacase de Myceliophthora thermophila em nanocelulose bacteriana (NCB) para a biotransformação de compostos fenólicos visando maior estabilidade operacional e a possibilidade de reuso, favorecendo assim sua aplicação em condições operacionais na indústria. O suporte para imobilização, a NCB, é um biopolímero produzido por algumas espécies de bactérias e apresenta diversas vantagens, como biodegradabilidade, elevada área superficial, resistência mecânica e flexibilidade. Portanto, primeiramente produziu-se a nanocelulose em escala laboratorial, a qual foi purificada e liofilizada. Em seguida, um delineamento experimental do tipo Box-Behnken foi elaborado para que a lacase pudesse ser imobilizada pelo método de cross-linking. As variáveis selecionadas para a otimização do processo foram pH (3, 4 e 5), concentração de enzima (200, 350 e 500 U L-1) e concentração de glutaraldeído (0,125%, 0,5% e 0,875%). A condição otimizada de imobilização foi de pH 5, concentração de enzima de 200 U L-1 e concentração de glutaraldeído de 0,4%. A imobilização da lacase ocorreu em três etapas: (1) fase de adsorção em que se adicionou 10 mg ±1 de NCB em tubos contendo 10 mL de lacase durante 30 minutos por 150 rpm a 30°C, (2) adição de glutaraldeído para passar por uma fase estacionária a 4°C por um período de 12 horas e (3) os tubos contendo a solução lacase e NCB passaram para uma etapa com rotação a 150 rpm por duas horas a 30°C. Após o processo de imobilização, realizaram-se testes para determinar as condições ótimas da atividade enzimática da enzima livre (EL) e imobilizada utilizando como substrato o ácido 2,2’-azino-bis(3-etilbenzotiazolina- 6-sulfónico) (ABTS), em que se observou as melhores condições para o pH 4 e temperatura de 60°C. Em seguida, foram realizados os testes para a determinação da estabilidade operacional, do armazenamento e reuso do sistema além das aplicações. Todos os testes foram realizados em triplicatas e utilizando as condições ótimas previamente definidas. Em relação ao armazenamento a enzima imobilizada (EI) manteve a sua atividade relativa entre 90 a 70% mesmo após quatro semanas, enquanto, a EL manteve somente 40% após o período de quatro semanas. Quanto ao reuso, a EI manteve a atividade relativa em cerca de 60% e 38% no quarto ciclo e no último ciclo (sétimo), respectivamente. Por fim, a EI apresentou resultados promissores como a possibilidade de ser um detector (biossensor) do catecol visto que após 90 minutos foi possível detecta-lo por UV-VIS quanto como um suporte com propriedades antioxidantes resultante da interação lacase e ácido ferúlico, podendo reter até 50 % da atividade antioxidante do ácido ferúlico (15 mM), além de ser possível o processo de biocoloração. Biological treatment through the application of enzymes may be an interesting alternative considering it is an efficient, economic and environmentally friendly alternative. Regarding the pollutants of interest in bioremediation, phenolic compounds can be mentioned, due the fact the problem involving these compounds is due to their low degradability and high toxicity in the environment. Among the enzymes that can be used in the bioremediation process, laccase can be presented as a possibility for the degradation of persistent compounds, because, it requires only oxygen for degradation to occur. Therefore, this work aimed to immobilize a Myceliophthora thermophila laccase in bacterial nanocellulose (BNC) for the biotransformation of phenolic compounds aiming at greater operational stability and the possibility of reuse, thus favoring its potential application under industrial operating conditions. The immobilization support, BNC, is a biopolymer produced by some species of bacteria that has several advantages such as biodegradability, high surface area, mechanical strength and flexibility, among others. Therefore, for this work, first it was produced the nanocellulose then the purification process was performed só the nanocellulose could pass to the lyophilization process. Then, a Box-Behnken experimental design was designed in order that the laccase could be immobilized by the cross-linking method. This design focused on the optimization of the immobilization process by evaluating the pH variation (3, 4 and 5), enzyme concentration. (200, 350 and 500 U L-1) and concentration of glutaraldehyde (0.125%, 0.5% and 0.875%). The optimized immobilization condition was at pH 5, enzyme concentration of 200 U L-1 and glutaraldehyde concentration of 0.4%. Immobilization occurred in three stages: (1) adsorption phase in which 10 mg ± 1 BNC was added to tubes containing 10 mL laccase for 30 minutes at 150 rpm at 30 ° C, (2) addition of glutaraldehyde to pass through a static phase at 4°C during overnight and (3) the tubes containing the laccase and BNC solution were rotated at 150 rpm for two hours at 30°C. Subsequently, the immobilization process was performed to determine the optimal conditions for enzyme activity of the free and immobilized laccase using 2,2’-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as substrate, where the best conditions were observed at pH 4 and 60°C. Then the tests were performed to determine the kinetic parameters, thermal stability, free and immobilized enzyme storage and reuse of the immobilized enzyme, all tests performed in triplicates and using the previously defined optimal conditions. Regarding storage test, the immobilized laccase maintained its relative activity between 90 and 70% after four weeks, while free enzyme maintained after four weeks 40% of its activity. As for the reuse, the immobilized enzyme maintained the relative activity in about 60% and 37% in the fourth cycle and in the last cycle (seventh), respectively. Lastly, the immobilized enzyme showed promising results for being used as detector (biosensor) for catechol considering the fact that even after 90 minutes, it was still possible to detect it by UVVIS also as a support with antioxidant properties regarding the interaction laccase and ferulic acid, being possible to retain 50% of the antioxidant activity of acid ferulic (15 mM), besides the possibility of the biocoloration process. |
Databáze: | OpenAIRE |
Externí odkaz: |