OmniPHR : a Blockchain based interoperable architecture for personal health records

Autor: Roehrs, Alex
Přispěvatelé: Righi, Rodrigo da Rosa, Costa, Cristiano André da
Jazyk: portugalština
Rok vydání: 2019
Předmět:
Zdroj: Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
Universidade do Vale do Rio dos Sinos (UNISINOS)
instacron:UNISINOS
Popis: Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2019-10-04T16:43:32Z No. of bitstreams: 1 Alex Roehrs_.pdf: 5062166 bytes, checksum: 0d49029aebb7eefe9064891c763bf21b (MD5) Made available in DSpace on 2019-10-04T16:43:32Z (GMT). No. of bitstreams: 1 Alex Roehrs_.pdf: 5062166 bytes, checksum: 0d49029aebb7eefe9064891c763bf21b (MD5) Previous issue date: 2019-08-16 CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior UNISINOS - Universidade do Vale do Rio dos Sinos The advances in the Health Information Technology (HIT) brought many benefits to the health care area, especially to the digital storage of patients’ health records. However, it is still a challenge to have a unified viewpoint of patients’ health history, because typically, health data is scattered among different health organizations. Furthermore, there are several standards for these records, some of them open and others proprietary. Usually, health records are stored in databases within health organizations and generally do not have external access. This situation applies mainly to cases where health care providers maintain patients’ data, known as EHR (Electronic Health Record). In the case of PHR (Personal Health Record), in which patients by definition can manage their health records, they usually have no control over their data stored in health care providers’ databases. Even with adopted standards, patients often need to explain over and over their health information when they are taken care at different locations. This problem hinders the adoption of PHR. OBJECTIVE: Thereby, we envision two main challenges regarding PHR context: first, how patients could have a unified view of their scattered health records, and second, how health care providers can access up-to-date data regarding their patients, even though changes occurred elsewhere. The scientific contribution is to propose an architectural model based on Blockchain to support a distributed PHR, where patients can maintain their health history in a unified viewpoint, from any device anywhere. Likewise, the scientific contribution for health care providers seeks to promote the possibility of having their patients’ data interconnected among health organizations. The methodology consists in proposing and prototyping an application model named OmniPHR (’Omni’ comes from omnipresent) as a distributed model to integrate PHRs. The method to evaluate the model includes assessing the network performance, interoperability, and semantic integration of different health standards, using a real database from anonymized patients. The evaluations demonstrate the feasibility of the model in maintaining health records distributed in an architecture model that promotes a unified view of PHR with the scalability of the solution. As a result, we evaluated the health data processed in different standards, represented by openEHR and HL7/FHIR. OmniPHR demonstrated the feasibility to provide semantic interoperability through a standard ontology and machine learning with NLP (Natural Language Processing). Although 12% of health records still required manual intervention in conversion, we present a way to obtain the original data from different standards on a single format. We evaluated our model implementation using the data set of more than 40,000 adult patients anonymized from two hospital databases. We tested the distribution and reintegration of the data to compose a single view of health records. Moreover, we profiled the model by evaluating a scenario with ten superpeers and thousands of concurrent sessions transacting operations on health records simultaneously, resulting in an average response time below 500 ms. The Blockchain implemented in our prototype achieved 98% availability. As contribution, OmniPHR presents a unified, semantic, and up-to-date vision of PHR for patients and health providers. The results were promising and demonstrated the possibility of subsidizing the creation of inferences rules about possible patients’ health problems and preventing future problems. Os avanços na Tecnologia da Informação trouxeram muitos benefícios para a área da saúde, especialmente para o armazenamento digital dos registros de saúde dos pacientes. No entanto, ainda é um desafio ter um ponto de vista unificado do histórico de saúde dos pacientes, porque normalmente os dados de saúde estão espalhados por diferentes organizações de saúde. Além disso, existem vários padrões para esses registros, alguns deles abertos e outros proprietários. Normalmente, os registros de saúde são armazenados em bancos de dados dentro das organizações e raramente se têm acesso externo. Essa situação se aplica principalmente aos casos em que os dados dos pacientes são mantidos pelas organizações de saúde, conhecidos como EHR (Electronic Health Record). No caso do PHR (Personal Health Record), no qual os pacientes podem gerenciar seus registros de saúde, eles geralmente não têm controle sobre seus dados armazenados nos bancos de dados das organizações. Mesmo com padrões de dados de saúde adotados, os pacientes muitas vezes precisam explicar diversas vezes suas informações de saúde quando são atendidos em locais diferentes. Esse problema dificulta a adoção do PHR. Desse modo, vislumbramos dois desafios principais no contexto de PHR: primeiro, como os pacientes podem ter uma visão unificada de seus registros de saúde dispersos e, segundo, como os profissionais de saúde podem acessar dados atualizados sobre seus pacientes, mesmo que as mudanças ocorram em outros lugares. A contribuição científica consiste em propor um modelo de arquitetura baseado em Blockchain para suportar um PHR distribuído, onde os pacientes possam manter seu histórico de saúde unificado, a partir de qualquer dispositivo e em qualquer lugar. Da mesma forma, a contribuição científica para os profissionais de saúde busca promover a possibilidade de interconexão dos dados dos pacientes entre as organizações de saúde. A metodologia consiste em propor e prototipar um modelo de aplicativo chamado OmniPHR (Omni de onipresente) como um modelo distribuído para integrar os PHRs. Para avaliar o modelo, o método inclui avaliar desempenho da rede, interoperabilidade e integração semântica de diferentes padrões de saúde, usando um banco de dados real de pacientes anonimizados. As avaliações demonstram a viabilidade do modelo na manutenção de registros de saúde distribuídos em um modelo de arquitetura que promove uma visão unificada do PHR com escalabilidade da solução. Como resultado, avaliamos os dados de saúde processados em diferentes padrões, representados por openEHR e HL7/FHIR. O OmniPHR demonstrou a viabilidade de fornecer interoperabilidade semântica através de uma ontologia padrão e PLN (Processamento de Linguagem Natural). Embora 12% dos registros de saúde ainda precisem de intervenção manual na conversão, apresentamos uma maneira de obter os dados originais de diferentes padrões em um único formato. Avaliamos a implementação do nosso modelo usando o conjunto de dados de mais de 40.000 pacientes adultos anonimizados de dois bancos de dados de hospitais. Testamos a distribuição e reintegração dos dados para compor uma única visão dos registros de saúde. Além disso, analisamos o modelo avaliando um cenário com 10 super nós e milhares de sessões concorrentes transacionando operações em registros de saúde simultaneamente, resultando em um tempo médio de resposta abaixo de 500 ms. O Blockchain implementado em nosso protótipo atingiu a disponibilidade de 98%. Como contribuição, o OmniPHR apresenta uma visão unificada, semântica e atualizada de PHR para pacientes e profissionais de saúde. Os resultados foram promissores e demonstraram a possibilidade de subsidiar a criação de inferências sobre possíveis problemas de saúde do paciente e a prevenção de problemas futuros.
Databáze: OpenAIRE