Uso de co-clustering para análise de imagens de altíssima resolução espacial

Autor: Santos, Fabrício de Almeida
Přispěvatelé: Bias, Edilson de Souza, Brites, Ricardo Seixas
Jazyk: portugalština
Rok vydání: 2022
Předmět:
Zdroj: Repositório Institucional da UnB
Universidade de Brasília (UnB)
instacron:UNB
Popis: Dissertação (mestrado) — Universidade de Brasília, Instituto de Geociências, Programa de Pós-Graduação em Geociências Aplicadas, 2022. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). No contexto de mineração de dados, ao se realizar a classificação em imagens de sensoriamento remoto, a extração de padrões é um importante passo. O uso de coclustering para análise de imagens agrega novas possibilidades de identificação de padrões, no ramo do conhecimento do sensoriamento remoto. Comumente se realiza a busca de padrões em imagens considerando-se cada dimensão por vez, portanto uma única banda. A proposta do uso de técnicas de co-clustering é justamente considerar-se, de forma iterativa, na dimensão espectral, todas as bandas da imagem original, além de camadas criadas, por exemplo de textura e morfologia matemática, simulando novas bandas de imagem. Ao final do processo, resulta-se em clusters de pixels efetivamente classificados. A partir de medidas de similaridade dadas pelos Índice de Jaccard, Índice de Rand e Índice de Rand Ajustado avaliaram-se os agrupamentos resultantes da técnica de co-clustering quando aplicada a um cubo de imagem gerado a partir de uma imagem RGB de altíssima resolução, concatenada a resultados de morfologia matemática e de análise de textura. Utilizou-se o método tradicional de classificação não supervisionada K-médias como base de comparação para avaliação dos resultados encontrados. Concluiu-se que o método é eficiente, desenvolvido a partir de imagens e classificação prévia, disponibilizadas pela ISPRS, classificação essa tratada como verdade para o contexto deste trabalho. In the context of data mining, when performing classification on remote sensing images, pattern extraction is an important step. The use of co-clustering for image analysis adds new possibilities for pattern identification in the field of remote sensing knowledge. Commonly, the search for patterns in images is performed considering each dimension individually at a time, therefore, a single band. The proposal for the use of co-clustering techniques is precisely to consider, in an iterative way, in the spectral dimension, all bands of the original image, in addition to created layers of texture and mathematical morphology, simulating new image bands. At the end of the process, effectively classified clusters of pixels are obtained. Based on similarity measures given by the Jaccard Index, Rand Index and Adjusted Rand Index, the resulting clusters of the co-clustering technique were evaluated when applied to an image cube generated from a very high resolution RGB image, concatenated to mathematical morphology and texture analysis results. The traditional method of unsupervised classification Kmeans was used as a basis for comparison to evaluate the results. It was concluded that the method is efficient, developed from images and previous classification, made available by the ISPRS, which was treated as true for the context of this work.
Databáze: OpenAIRE