Desarrollo de un modelo matemático a través de procesos estocásticos para optimizar el tráfico vehicular en la Escuela Superior Politécnica de Chimborazo proyectado para el año 2023

Autor: Murillo Fajardo, Juan Pablo
Přispěvatelé: Román Vargas, Wilson Marcelo, Zúñiga Lema, Lourdes del Carmen, Barreno Layedra, Norma del Pilar
Jazyk: Spanish; Castilian
Rok vydání: 2022
Předmět:
Zdroj: Repositorio Escuela Superior Politécnica de Chimborazo
Escuela Superior Politécnica de Chimborazo
instacron:ESPOCH
Popis: El objetivo fue desarrollar un modelo matemático a través de procesos estocásticos para optimizar el tráfico vehicular en la Escuela Superior Politécnica de Chimborazo proyectado para el año 2023. La investigación comenzó definiendo y delimitando el problema de congestión vehicular que se ha generado en el campus politécnico, y que debido a su rápido crecimiento poblacional por la diversificación de sus programas académicos se avizora que el problema se vaya incrementado. Se orientó en la construcción del modelo de la dinámica del tránsito vehicular mediante Autómatas Celulares basado en el modelo de Nagel- Schreckenberg bajo el enfoque microscópico empleando el proceso estocástico no estacionario. En los cálculos realizados, se consideró 900 como número de vehículos que ingresan dentro del campus hora y una longitud de 743 metros de distancia con una velocidad promedio de 30 kilómetros por hora. Cuando la probabilidad de frenado varío entre 0 a 0.3, los vehículos se desplazaron sin detenerse muy seguido, es decir, tuvieron un congestionamiento mínimo, mientras que, cuando la probabilidad de frenado varío entre 0.4 a 0.6, el embotellamiento empezó a observarse, por lo que el frenado aumentó y los vehículos se detuvieron más seguidos; finalmente, cuando la probabilidad de frenado varío entre 0.7 a 1, los vehículos se encontraron detenidos en su totalidad y no existió desplazamiento, es decir la velocidad de cada vehículo fue igual a cero. La simulación del modelo se realizó en el software Wólfram Mathemática, la cual permitió tener una visión detallada y real del congestionamiento dentro del campus. Se recomendó ampliar el modelo propuesto para incluir otros factores que influyen en el comportamiento del tráfico vehicular, estos factores pueden ser el clima, el estado de las carreteras, entre otros. The objective was to develop a mathematical model through stochastic processes to optimize vehicular traffic in the Escuela Superior Politécnica de Chimborazo projected for the year 2023. The research began by defining and delimiting the problem of vehicular congestion that has been generated on the polytechnic campus, and that due to its rapid population growth due to the diversification of its academic programs, the problem is expected to increase. It was oriented in the construction of the model of the dynamics of vehicular traffic through Cellular Automata based on the Nagel-Schreckenberg model under the microscopic approach using the non-stationary stochastic process. In the calculations performed, 900 vehicles were considered as the number of vehicles entering the campus hourly and a length of 743 meters distance with an average speed of 30 kilometers per hour. When the braking probability varied between 0 to 0.3, the vehicles moved without stopping very often, that is, they had minimum congestion, while, when the braking probability varied between 0.4 to 0.6, the congestion began to be observed, so the braking increased and the vehicles stopped more often; finally, when the braking probability varied between 0.7 to 1, the vehicles were stopped completely and there was no displacement, that is, the speed of each vehicle was equal to zero. The simulation of the model was performed in the Wolfram Mathematics software, which allowed us to have a detailed and real vision of the congestion inside the campus. It was recommended to extend the proposed model to include other factors that influence the behavior of vehicular traffic, these factors can be the weather, and road conditions, among others.
Databáze: OpenAIRE