About constant geodesic curvature curves in two-dimensional manifolds
Autor: | Rosilene Aparecida Felício |
---|---|
Přispěvatelé: | Gilcione Nonato Costa, Fabio Enrique Brochero Martinez, Heleno da Silva Cunha, José Antônio Gonçalves Miranda |
Jazyk: | portugalština |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Repositório Institucional da UFMG Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
Popis: | CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico Neste trabalho, trataremos sobre curvas que possuem curvatura geodésica constante em variedades bidimensionais. Assim, através do artigo em [13]; "A note on constant geodesic curvature curves on surfaces" publicado em 2009 no jornal: Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire, falaremos com mais detalhes sobre a curvatura geodsiéca e de curvas especiais que possuem essas curvaturas respectivamente. O teorema principal dessa dissertação mostra que se existe uma sequência de círculos geodésicos que convergem para um dado ponto p ∈ M então esse p é um ponto singular da aplicação de Gauss. In this work, we will deal with curves that have constant geodetic curvature in two-dimensional varieties. Thus, through the article in [13], "A note on constant geodesic curvature curves on surfaces" published in 2009 in the newspaper: Annales de l’Institut Henri Poincaré C, Analyze Non Linéaire, we will talk in more detail about geodesic curvature and special curves that have these curvatures respectively. The main theorem of this dissertation shows that if there is a sequence of geodesic circles that converge for a given point, this is a singular point in the Gaussian application. |
Databáze: | OpenAIRE |
Externí odkaz: |