MODELO DE OTIMIZAÇÃO ROBUSTA ORIENTADO POR DADOS APLICADO NA ALOCAÇÃO DE RENDA FIXA

Autor: JESSICA ALVES
Přispěvatelé: DAVI MICHEL VALLADAO, BETINA DODSWORTH MARTINS FROMENT FERNANDES, FRANCES FISCHBERG BLANK
Jazyk: portugalština
Rok vydání: 2017
Zdroj: Repositório Institucional da PUC-RIO (Projeto Maxwell)
Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron:PUC_RIO
Popis: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO Este trabalho propõe um modelo de otimização robusta de pior caso orientado por dados aplicado na seleção de um portfólio de títulos de renda fixa. A gestão das carteiras implica na tomada de decisões financeiras e no gerenciamento do risco através da seleção ótima de ativos com base nos retornos esperados. Como estes são variáveis aleatórias incertas foi incluído um conjunto definido de incertezas estimadas diretamente no processo de otimização, chamados de cenários. Foi usado o modelo de ajuste de curvas Nelson e Siegel para construir as estruturas a termo das taxas de juros empregadas na precificação dos títulos, um ativo livre de risco e alguns ativos com risco de maturidades diferentes. Os títulos prefixados são marcados a mercado porque estão sendo negociados antes do prazo de vencimento. A implementação ocorreu pela simulação computacional usando dados de mercado e dados estimados que alimentaram o modelo.Com a modelagem de otimização robusta foram realizados diferentes testes como: analisar a sensibilidade do modelo frente às variações dos parâmetros verificando seus resultados e a utilização de um horizonte de janela rolante para simular o comportamento ao longo do tempo. Obtidas as composições ótimas das carteiras, foi feito o backtesting para avaliar o comportamento das alocações com o retorno real e também a comparação com o desempenho de umbenchmark. Os resultados dos testes mostraram a adequação do modelo da curva de juros e bons resultados de alocação do portfólio robusto, que apresentaram confiabilidade até em períodos de crise. This paper proposes a data-driven worst case robust optimization model applied in the selection of a portfolio of fixed income securities. The portfolio management implies in financial decision-making and risk management through the selection of optimal assets based on expected returns. As these are uncertain random variables, was included a defined set of estimated uncertainties directly in the optimization process, called scenarios. The Nelson and Siegel curve fitting model was used to construct the term structure of the interest rates employed in the pricing of securities, a risk-free asset and some risky assets of different maturities. The fixed-rate securities are marked to market because they are being traded before the maturity date. The implementation took place through computational simulation using market data and estimated data that fed the model. With robust optimization modeling were done different tests such as: analyze the sensitivity of the model to the variations of the parameters checking the results and the use of a rolling horizon scheme to simulate behavior over time. Once the optimal portfolio composition was obtained, the backtesting was done to evaluate the behavior of the allocations with the real return and also the comparison with the performance of a benchmark. The results of the tests showed the adequacy of the interest curve model and good allocation results of the robust portfolio, which presented reliability even in times of crisis.
Databáze: OpenAIRE