Síntese e caracterização de géis da reação álcali-sílica em condições aceleradas
Autor: | Almeida, Thiago da Silva |
---|---|
Přispěvatelé: | Torres, Sandro Marden |
Jazyk: | portugalština |
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Biblioteca Digital de Teses e Dissertações da UFPB Universidade Federal da Paraíba (UFPB) instacron:UFPB |
Popis: | In the concrete pathology area several mechanisms are responsible for submitting cracking frames. Either by mechanical electrochemical or geochemical phenomena, the appearance of cracks is quite common in many structures. However among the various processes that can lead to excessive cracking we highlight the corrosion of armor, the attack by intrinsic or extrinsic sulfate (ettringite). The alkali-aggregate reaction (AAR) in turn has achieved prominence recently especially the powers given to buildings in the city of Recife with severe damage to the structure. This phenomenon is complex although the scientific knowledge around the topic is abundant the Brazilian standard is recent. Known for over 60 years in technical means it is known that this reaction is generally slow and involves alkalis from the cement and some mineralogical constituents of the aggregates. The product of this reaction is a hygroscopic gel which on contact with water swells considerably which in addition to cause a cracking process in concrete structures also generates the triggering of other pathological manifestations due to ingress of aggressive agents that they spread the cracks. Thus various accelerated tests have been used for the diagnosis of susceptibility of aggregates throughout the world. In practice it is common to observe the occurrence of conflicting results generating false negative in some cases. In this sense there is still need to improve knowledge on the effects of testing conditions accelerated in the microstructure thermodynamics and kinetics of the reaction of forming AAR gels. So this thesis aims to synthesize under controlled conditions of laboratory AAR gels from amorphous nature of aggregates (Pyrex) and crystalline (granite gravel) through the evolution of the microstructural characteristics of the gels the temperature is varying the molarity and the type alkali. For production of AAR gels were used and three Pyrex the granite aggregate mixed with solutions of NaOH 1M and 3M KOH and the mixture of both NaOH and KOH 3M and reaction process cues in the 20 °C temperature 40 °C 60 °C and 80 °C for 28 days during this reaction process the pH of the solutions were monitored. After the process of reaction all raw materials and RAA gels produced undergone an advanced microstructural characterization making the use of techniques such as XRF, SEM, XRD, FTIR and TGA / DTA. The results showed that both the temperature increase as the molarity accelerate the reaction kinetics for formation of gels RAA with increasing molarity contribute more significantly. The XRD indicated phase transformations both in the amorphous system as in the lens and the emergence of new crystalline phases rich in sodium (Trona, Natron and Termonatrite). In the lens system it was found that the phase that most contributed to the formation of AAR gels was mica. And mica rich gravel in the Muscovite type are more reactive than gravel rich in mica-type biotite. The thermal analysis and FTIR showed that the gravel rich in Muscovite mica type are not only more reactive but also contribute to the formation of gels combined with water in its structure. With respect to the type of alkali results showed that the type of alkali influences not only the type of gel formed and also the amount of gel produced, where K-type systems containing alkali AAR showed a higher production capacity gels compared with alkali systems of the type Na or the mixture of Na and K. The results also show that gels formed of AAR in alkaline solutions in the presence of Na and K showed more combined water in their structure when compared to gels produced from solutions with Na and K alkali separately. Nenhuma Na área da patologia de concreto, diversos mecanismos são responsáveis pela apresentação de quadros fissuratórios. Seja por fenômenos mecânicos, eletroquímicos ou geoquímicos, o aparecimento de fissuras é bastante comum em diversas estruturas. Porém, dentre os vários processos que podem provocar a fissuração excessiva, destacam-se a corrosão de armaduras, o ataque por sulfatos intrínsecos ou extrínsecos (etringita), carbonatação e RAA. A reação álcali-agregado, por sua vez, tem alcançado destaque, principalmente pelas atribuições dadas para edificações na cidade de Recife-PE com danos severos à estrutura. Esse fenômeno é bastante complexo, embora o conhecimento científico em torno do tema seja abundante, a Norma Brasileira é recente. Conhecida há mais de 60 anos no meio técnico, sabe-se que essa reação é geralmente lenta e envolve os álcalis, provenientes do cimento, e certos constituintes mineralógicos dos agregados. O produto desta reação é um gel higroscópico que, em contato com a água, aumenta de volume consideravelmente, ocasionando um processo fissuratório nas estruturas de concreto, gerando o desencadeando de outras manifestações patológicas devido à entrada de agentes agressivos que se difundem pelas fissuras. Desta forma, diversos ensaios acelerados têm sido usados para o diagnóstico da susceptibilidade de agregados em todo o mundo. Na prática, é comum se observar a ocorrência de resultados conflitantes, gerando falsos negativos em alguns casos. Nesse sentido, ainda há necessidade de se aprofundar os conhecimentos sobre os efeitos das condições de ensaios acelerados na microestrutura, termodinâmica e cinética da reação formadora dos géis de RAA. Assim, esse trabalho visa sintetizar em condições controladas de laboratório géis de RAA a partir de fontes de sílica de natureza amorfa (pirex) e cristalina (britas graníticas), através da evolução das características microestruturais dos géis, variando-se a temperatura, a molaridade e o tipo de álcali. Para produção dos géis sintéticos de RAA foram usados o pirex e três agregados graníticos, misturados com soluções de NaOH a 1M e 3M, KOH e a mistura de NaOH e KOH ambas a 3M e deixas em processo de reação nas temperatura de 20°C, 40°C, 60°C e 80°C até 28 dias, durante esse processo de reação, os pHs das soluções foram monitorados. Após as reações todas as matérias primas e géis de RAA produzidos passaram por uma caracterização microestrutural avançada fazendo-se o emprego de técnicas como: FRX, MEV, DRX, FTIR e TGA/DTA. Os resultados mostraram que tanto o aumento da temperatura, quanto o da molaridade aceleram a cinética de reação para formação de géis de RAA, sendo que o aumento da molaridade contribuiu de forma mais significativa. Os DRX indicaram transformações de fases tanto no sistema amorfo quanto no cristalino e surgimento de novas fases cristalinas ricas em sódio (Trona, Natron e Termonatrite). No sistema cristalino foi possível constatar que a fase que mais contribuiu para formação de géis de RAA foi a mica, e que britas ricas em micas do tipo Muscovita foram mais reativas que britas ricas em micas do tipo Biotita. O FTIR e as análises térmicas mostraram que as britas ricas em mica do tipo Muscovita não só são mais reativas, mas também contribuem para formação de géis com mais água combinada na sua estrutura. Com relação ao tipo de álcali os resultados mostraram que o tipo de álcali influencia não só no tipo de gel formado, como também na quantidade de gel produzido, onde sistemas contendo álcalis do tipo K apresentaram uma maior capacidade de produção de géis de RAA quando comparado com sistemas com álcalis do tipo Na ou a mistura de Na e K. Os resultados mostraram também que géis de RAA formados em soluções alcalinas com a presença de Na e K apresentaram mais água combinada na sua estrutura, quando comparados com os géis produzidos a partir de soluções com álcalis de Na e K separadamente. |
Databáze: | OpenAIRE |
Externí odkaz: |