Characterization of Hypsarrhythmias secondary to Congenital Syndrome of Zika and West Syndrome based on Joint Moments and Entropy Measures

Autor: ROCHA, Priscila Lima
Přispěvatelé: BARROS FILHO, Allan Kardec Duailibe, SILVA, Washington Luis Santos, SILVA, Washington Luís Santos, PIRES, Danubia Soares, BARREIROS, Marta de Oliveira, SANTANA, Ewaldo Eder Carvalho
Jazyk: portugalština
Rok vydání: 2022
Předmět:
Zdroj: Biblioteca Digital de Teses e Dissertações da UFMA
Universidade Federal do Maranhão (UFMA)
instacron:UFMA
Popis: Submitted by Jonathan Sousa de Almeida (jonathan.sousa@ufma.br) on 2022-07-11T17:05:28Z No. of bitstreams: 1 PRISCILALIMAROCHA.pdf: 6661794 bytes, checksum: a15d04794ce3ffe8c4b8c47dc317e7db (MD5) Made available in DSpace on 2022-07-11T17:05:28Z (GMT). No. of bitstreams: 1 PRISCILALIMAROCHA.pdf: 6661794 bytes, checksum: a15d04794ce3ffe8c4b8c47dc317e7db (MD5) Previous issue date: 2022-05-31 West Syndrome is a rare and severe form of childhood epilepsy characterized by triad: presence of spasms, cognitive developmental delay and the hipsarrhythmia pattern on electroencephalogram (EEG). Hipsarrhythmia is a specific chaotic morphology present in the interictal period of the EEG signal, studied and known by neurologists since 1841, through the description of West Syndrome (WS) and which has recently also been identified in the examinations of patients with Zika virus congenital syndrome (ZVCS). The hipsarrhythmia characterization in infants with microcephaly due Zika virus is still very superficial. Then, the question arises whether there is a difference between the hysarrhythmic pattern that occurs in those born with CZVS of those from WS. Since the emergence of ZVCS cases, many questions about the characterization of this disease are still open, among them, whether the hypsarrhythmia in ZVCS follows the same electroencephalographic pattern as the hypsarrhythmia in WS. In view of this, this work proposes the development of a computational methodology for analysis and differentiation, based on the time-frequency domain, between the chaotic hipsarrhythmia pattern found in EEG signals of patients with microcephaly caused by Zika virus and also found in patients diagnosed with West Syndrome. Analysis in the time-frequency domain is performed from the Wavelet Continuous Transform (CWT) which reveals the energy distribution of the EEG signal at different frequency scales over time. Three mother-wavelet functions are tested to determine the most appropriate function to represent EEG signals with hipsarrhythmia ZVCS and hipsarrhythmia WS. Considering the energy distribution profiles generated by CWT, four joint moments are obtained - joint mean - μ(t,f) , joint variance - σ 2 (t,f) , join skewness - λ(t,f) , and join kurtosis - κ(t,f) - and four entropy measures - Shannon, Log Energy, Norm, and Sure - to compose the attributes vector that representing the hypsarrhythmic signals under analysis. The performance of five classical types of machine learning algorithms are verified in classification using the k-fold cross validation and leave-one-patient-out cross validation methods. Discrimination results provided 78,08% accuracy, 85,55% sensitivity, 73,21% specificity, and AUC = 0,89 for the ANN classifier. A Síndrome de West é uma rara e severa forma de epilepsia da infância caracterizada pela tríade: presença de espamos, retardo no desenvolvimento cognitivo e o padrão de hipsarritmia no exame de eletroencefalograma (EEG). A hipsarritmia é uma morfologia caótica específica presente no período interictal do sinal de EEG, estudada e conhecida pelos neurologistas desde 1841, por meio da descrição da Síndrome de West (SW) e que, recentemente, também foi identificada nos exames dos pacientes com a Síndrome Congênita do Zika vírus (SCZV). A caracterização da hipsarritmia nos lactentes com microcefalia pelo Zika vírus ainda são bem superficiais. Então, levanta-se o questionamento se há diferença entre o padrão hipsarrítmico que ocorre nos nascidos com a SCZV daqueles provenientes da SW. Desde o surgimento dos casos de microcefalia SCZV, muitas questões sobre a caracterização desta doença ainda estão em aberto, dentre elas, determinar se a hipsarritmia na SCZV segue o mesmo padrão eletroencefalográfico da hipsarritmia da SW. Diante disto, neste trabalho se propõe o desenvolvimento de uma metodologia computacional para análise e diferenciação, baseada no domínio tempo-frequência, entre o padrão caótico de hipsarritmia encontrado nos sinais de EEG de pacientes com microcefalia causada pelo Zika vírus e também encontrado em pacientes diagnosticados com a Síndrome de West. A análise no domínio tempo-frequência é realizada a partir da Transformada Contínua Wavelet (TCW) que revela a distribuição de energia do sinal de EEG em diferentes escalas de frequência ao longo do tempo. Três funções wavelet-mãe são testadas para determinar a função mais apropriada para representar os sinais de EEG com hipsarritmia SCZV e hipsarritmia SW. Considerando os perfis de distribuição de energia gerados pela TCW, são obtidos quatro momentos conjuntos - média conjunta - μ(t,f) , variância conjunta - σ 2 (t,f) , assimetria conjunta - λ(t,f) e curtose conjunta - κ(t,f) - e quatro medidas de entropia - Shannon, Log Energia, Norma e Sure - para compor o vetor de atributos representativos dos sinais hipsarrítmicos em análise. A classificação entre os dois padrões em análise foi realizada a partir da verificação do desempenho de cinco tipos clássicos de algoritmos de aprendizagem de máquina, utilizando os métodos de validação cruzada k-fold e leave- one-patient-out. As métricas de acurácia, sensibilidade, especificidade, área sob a curva ROC, coeficiente Cohen’s kappa (κ) e Matthews correlation coefficient (MCC) são obtidas para estes algoritmos. Os resultados alcançados para o classificador Rede Neural Artificial foram 78,08% de acurácia, 85,55% de sensibilidade, 73,21% de especificidade, AUC = 0,89, κ = 0,5616 e MCC = 0,5765 para o método de validação leave-one-patient-out.
Databáze: OpenAIRE