Métodos de elementos finitos híbridos estabilizados para a equação de Cahn-Hilliard e suas aplicações

Autor: Medina, Emmanuel Felix Yarleque
Přispěvatelé: Toledo, Elson Magalhães, Rocha, Bernardo Martins, Igreja, Iury Higor Aguiar da, Queiroz, Rafael Alves Bonfim de, Loula, Abimael Fernando Dourado, Almeida, Regina Celia Cerqueira de
Jazyk: portugalština
Rok vydání: 2021
Předmět:
Zdroj: Repositório Institucional da UFJF
Universidade Federal de Juiz de Fora (UFJF)
instacron:UFJF
Popis: CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Diversos problemas com interface demandam a solução numérica de equações diferenciais parciais em domínios móveis, onde os movimentos das interfaces são desconhecidos e difíceis de se calcular quando estas passam por mudanças topológicas. A abordagem de campo de fase tem se mostrado como uma poderosa ferramenta para a modelagem de tais problemas, considerando um domínio computacional conhecido e fixo. Nesse contexto, a equação de Cahn-Hilliard, inicialmente usada para modelar a separação de ligas binárias, tem sido muito utilizada em diversas aplicações que vão desde a modelagem do crescimento tumoral até o processamento de imagens. Trata-se de uma equação diferencial parcial parabólica de quarta ordem não linear que apresenta grandes desafios para a sua solução numérica, que em determinadas casos pode apresentar oscilações não físicas e demandar o uso de malhas e passos de tempo extremamente refinados. Este trabalho tem como objetivo contornar tais dificuldades numéricas através de formulações dos elementos finitos híbridos no espaço e formulações de segunda ordem no tempo visando robustez e eficiência. A equação de Cahn-Hilliard clássica assim como outros modelos baseados nesta serão estudados do ponto de vista numérico para verificar a ordem de convergência dos métodos apresentados e avaliar sua eficiência e precisão. Em particular, algumas aplicações da equação de Cahn-Hilliard como a modelagem do crescimento tumoral avascular e o processo de eletromolhabilidade também são considerados neste trabalho. Several interface problems demand the numerical solution of partial differential equations in moving domains, where the movements of the interfaces are unknown and difficult to calculate when they undergo topological changes. The phase field approach has been shown to be a powerful tool for modeling such problems, considering a known and fixed computational domain. In this context, the Cahn-Hilliard equation, initially developed to model the separation of binary alloys, has been widely used in several applications ranging from modeling tumor growth to image processing. It consists of a non-linear fourth-order parabolic partial differential equation that presents great challenges in the numerical solution, which in certain cases can present non-physical oscillations and demand the use of extremely refined meshes and time steps. This work aims to overcome such numerical difficulties through hybrid finite element formulations in space and second-order formulations in time aiming at robustness and efficiency. The classical Cahn-Hilliard equation as well as other models based on it are studied from a numerical point of view to verify the order of convergence of the presented methods and evaluate their efficiency and precision. In particular, some applications of the Cahn-Hilliard equation such as in the modeling of tumor growth and the electrowetting process are also considered in this work. Several interface problems demand the numerical solution of partial differential equations in moving domains, where the movements of the interfaces are unknown and difficult to calculate when they undergo topological changes. The phase field approach has been shown to be a powerful tool for modeling such problems, considering a known and fixed computational domain. In this context, the Cahn-Hilliard equation, initially developed to model the separation of binary alloys, has been widely used in several applications ranging from modeling tumor growth to image processing. It consists of a non-linear fourth-order parabolic partial differential equation that presents great challenges in the numerical solution, which in certain cases can present non-physical oscillations and demand the use of extremely refined meshes and time steps. This work aims to overcome such numerical difficulties through hybrid finite element formulations in space and second-order formulations in time aiming at robustness and efficiency. The classical Cahn-Hilliard equation as well as other models based on it are studied from a numerical point of view to verify the order of convergence of the presented methods and evaluate their efficiency and precision. In particular, some applications of the Cahn-Hilliard equation such as in the modeling of tumor growth and the electrowetting process are also considered in this work.
Databáze: OpenAIRE