Comparación de los algoritmos de LASSO y LARS en el problema de selección de variables y su aplicación en series de tiempo

Autor: Eric Iturbide Díaz
Přispěvatelé: Jaime Cerda Jacobo, Mario Graff Guerrero
Jazyk: Spanish; Castilian
Rok vydání: 2013
Předmět:
Zdroj: Universidad Michoacana de San Nicolás de Hidalgo
UMSNH
Repositorio Institucional de la Universidad Michoacana de San Nicolás de Hidalgo
Popis: Facultad de Ingeniería Eléctrica. Maestría en Ciencias en Ingeniería Eléctrica In this thesis, two algorithms for selecting variables are presented; Operator Selection and Low Absolute Shrinkage (LASSO for its acronym in English "Least Absolute Shrinkage and Selection Operator") and the Lesser Angle Regression (LARS for its acronym in English "Least Angle Regression") to predict time series. These techniques are applied in the linear model. In this study, cross-validation is used to obtain the best final model. This technique aims to find the suitable parameters to avoid under learning and learning. The results show that LASSO and LARS have a Square or higher predictive power than ordinary least in terms of average error in the validation set. For this purpose 4,004 different time series that were taken of competitions called M1 and M3 time series were used. Finally, it is well known that LASSO and LARS behave similarly, however, the results show differences in the accuracy of predictions. LARS is the best model according to these experiments. En esta tesis, se presentan dos algoritmos de selección de variables; Selección de Operadores y Contracción del Menor Absoluto (LASSO por sus siglas en inglés "Least Absolute Shrinkage and Selection Operator") y Regresión por el Menor Angulo (LARS por sus siglas en inglés "Least Angle Regression") para predecir series de tiempo. Estas técnicas son aplicadas en el modelo lineal. En este trabajo, se utiliza validación cruzada para obtener el mejor modelo final. Esta técnica tiene como objetivo encontrar los parámetros idóneos para evitar el bajo aprendizaje y sobre-aprendizaje. Los resultados muestran que LASSO y LARS tiene un poder predictivo superior o igual que Mínimos Cuadrados Ordinarios en términos de error promedio en el conjunto de validación. Para este fin se utilizaron 4,004 series de tiempo diferentes que fueron tomadas de las competiciones llamadas M1 y M3 de series de tiempo. Finalmente, es bien sabido que LASSO y LARS se comportan de manera similar, sin embargo, los resultados obtenidos muestran diferencias en la precisión de las predicciones. LARS es el mejor modelo de acuerdo a estos experimentos.
Databáze: OpenAIRE