Um estudo do modelo de Ericksen-Leslie para cristais líquidos via método dos elementos finitos : existência de soluções, aproximações e análise de erro

Autor: Vianna Filho, André Luiz Corrêa
Přispěvatelé: Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Matemática, Damázio, Pedro Danizete
Jazyk: portugalština
Rok vydání: 2018
Předmět:
Zdroj: Repositório Institucional da UFPR
Universidade Federal do Paraná (UFPR)
instacron:UFPR
Popis: Orientador: Prof. Dr. Pedro Danizete Damázio Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Matemática. Defesa : Curitiba, 22/02/2018 Inclui referências: p.125-127 Resumo: Considera-se uma versão penalizada do modelo de Ericksen-Leslie para o escoamento de cristais líquidos nemáticos. Estuda-se a existência de soluções para o modelo pelo método de Faedo-Galerkin. Como um dos objetivos deste trabalho é a aproximação do modelo, os domínios utilizados são poliedros (dimensão 3) ou polígonos (dimensão 2) com fronteira localmente Lipschitz. Demonstra-se também um resultado de unicidade para a solução dada pelo resultado de existência em alguns domínios não suaves de dimensão 2. Após, apresenta-se um esquema totalmente discreto linear baseado em uma formulação mista, utilizando-se elementos finitos de classe C 0 para a discretização no espaço e um esquema de Euler semi-implícito para a discretização no tempo. Mostra-se a convergência das soluções aproximadas para soluções fracas, dadas pelo resultado de existência. Finalmente, faz-se a análise do erro discreto para soluções suficientemente regulares. Palavras-chave: Equações de Ericksen-Leslie; Cristais líquidos nemáticos, Método dos Elementos Finitos. Abstract: A penalized version of the Ericksen-Leslie model for the flow of nematic liquid crystals is considered. We study the existence of solutions by the Faedo-Galerkin method. Since one of the objectives of this work is the approximation of the model, the domains used are polyhedra (dimension 3) or polygons (dimension 2) with locally Lipschitz boundary. We also demonstrate a uniqueness result for the solution given by the existence result on some non-smooth domains of dimension 2. After, we present a linear fully discrete scheme based on a mixed formulation, using C 0 finite elements for the space discretization and a semi-implicit Euler scheme for the time discretization. We prove the convergence of the approximate solutions towards weak solutions, given by the existence result. Finally, we analyse the discrete error for sufficiently regular solutions. Keywords: Ericksen-Leslie equations; Nematic liquid crystals; Finite Element Method.
Databáze: OpenAIRE