Cognitive activity identification from machine learning models applied to Electroencephalogram (EEG) signal processing

Autor: SILVA, Juliana Mycaelle Oliveira
Přispěvatelé: BARROS FILHO, Allan Kardec Duailibe, BARROS FILHO , Allan Kardec Duailibe, SOUSA, Gean Carlos Lopes de, ROCHA, Priscila Lima
Jazyk: portugalština
Rok vydání: 2022
Předmět:
Zdroj: Biblioteca Digital de Teses e Dissertações da UFMA
Universidade Federal do Maranhão (UFMA)
instacron:UFMA
Popis: Submitted by Jonathan Sousa de Almeida (jonathan.sousa@ufma.br) on 2022-10-24T11:51:42Z No. of bitstreams: 1 JULIANAMYCAELLEOLIVEIRASILVA.pdf: 7868019 bytes, checksum: 006e3c4e1d1e57ecbb010a0d4c6d56cf (MD5) Made available in DSpace on 2022-10-24T11:51:42Z (GMT). No. of bitstreams: 1 JULIANAMYCAELLEOLIVEIRASILVA.pdf: 7868019 bytes, checksum: 006e3c4e1d1e57ecbb010a0d4c6d56cf (MD5) Previous issue date: 2022-09-16 FAPEMA The different types of activities performed by the subject, such as reading; lis- ten to music; to dance; among others, they lead to the activation of brain regions. Among these activities, cognitive activities are associated with an activation of brain regions related to learning, such as the frontal lobe regions (Superior Frontal, Pre- cuneus, among others). Several studies have been developed to relate cognitive activities and associated brain regions. This type of study is important in unders- tanding the functionality and connectivity of the brain and this knowledge can help to diagnose abnormalities in its functioning. This study aims to develop a classifier model of brain activities during the development of a cognitive activity within the three categories of activity: Video game, music or mathematics. For this, we used the Electroencephalogram (EEG) signals collected in two public databases and using the technique of estimation of brain sources, the anatomical regions related to each of the activities were estimated. After this determination, a model based on ma- chine learning was trained and tested that classifies the type of activity performed according to the activity categories. From the obtained results, we can highlight the en-cephalic activities classifier model elaborated with an accuracy of 99.9%. Os diferentes tipos de atividades realizadas pelo sujeito, como ler; ouvir música; dançar; entre outras, conduzem a ativação das regiões encefálicas. Dentre essas atividades, as atividades cognitivas estão associadas a uma ativação de regiões encefálicas relacionadas com a aprendizagem, como as regiões do lóbulo frontal (Superior Frontal, Precuneus, entre outras). Diversos estudos vem sendo desenvolvidos para relacionar atividades cognitivas e as regiões encefálicas associadas. Este tipo de estudo é importante na compreensão da funcionalidade e conectividade do encéfalo e esse conhecimento pode servir de auxílio para o diagnóstico de anormalidades no seu funcionamento. Este estudo tem como objetivo a elaboração de um modelo classificador de atividades encefálicas durante o desenvolvimento de uma atividade cognitiva dentro das três categorias de atividade: Jogo de video game, música ou matemática. Para isso, utilizou-se dos sinais de Eletroencefalograma (EEG) coletados em duas bases de dados públicas e com uso da técnica de estimação de fontes encefálicas estimou-se as regiões anatômicas relacionadas a cada uma das atividades. Após essa determinação, foi treinado e testado um modelo baseado em aprendizado de máquinas que classifica o tipo de atividade desempenhada de acordo com as categorias de atividade. Dos resultados obtidos, podemos ressaltar o modelo classificador das atividades encefálicas elaborado com accurácia de 99,9%.
Databáze: OpenAIRE