Síntese de bio-hidrocarbonetos via catálise heterogênea para a produção de bioquerosene de aviação e diesel verde

Autor: Cristiane Almeida Scaldaferri
Přispěvatelé: Vanya Marcia Duarte Pasa, Claudia Cristina Cardoso da Silva, Amanda Duarte Gondim, Rosemeire Brondi Alves, Eduardo Nicolau dos Santos
Jazyk: portugalština
Rok vydání: 2019
Předmět:
Zdroj: Repositório Institucional da UFMG
Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
Popis: Nos últimos anos, um dos maiores desafios na área de biocombustíveis é a produção de biocombustíveis drop-in, tais como o diesel verde e o bioquerosene de aviação, os quais são compostos por bio-hidrocarbonetos líquidos e não oxigenados. Para a produção dos bio-hidrocarbonetos foram utilizados, nesta tese, o óleo de soja, o líquido da casca da castanha de caju (LCC) e o éter difenílico, um composto modelo da lignina. Para avaliar a desoxigenação do óleo de soja foi realizado um screening de catalisadores, utilizando as zeólitas HBeta e ZSM-5, o catalisador usado no processo de craqueamento catalítico durante o refino de petróleo, FCC (Fluid Catalytic Cracking), o catalisador 5% paládio suportado em carbono ativado (Pd/C) e o fosfato de nióbio (NbOPO4). Dentre estes, o catalisador fosfato de nióbio apresentou um ótimo desempenho na produção de biocombustíveis drop-in. A atividade do NbOPO4 foi avaliada sob diferentes tempos de reação (3 e 5 h), quantidade de catalisador (0 a 25%) e temperatura (300 e 350 °C), usando-se 10 bar N2 ou 10 bar H2. As propriedades ácidas e redox do NbOPO4 levaram à formação simultânea de alcanos lineares e ramificados, cicloalcanos, olefinas e compostos aromáticos. O processo de otimização levou a elevados rendimentos (76-97%) de hidrocarbonetos, principalmente na faixa de bioquerosene de aviação (60%), seguido de diesel verde (40%) e biogasolina (20%). O líquido da casca da castanha de caju (LCC) foi usado como matéria-prima para produção de diesel verde. Os parâmetros de reação como temperatura (180, 250 e 300° C), tempo (5 e 10 h) e pressão (10, 20, 30 e 40 bar) foram investigados para as reações de upgrading (desoxigenação, hidrogenação e craqueamento) do LCC, usando-se como catalisador o Pd/C. Um rendimento de 98% de hidrocarbonetos na faixa de diesel (C15 a C21) foi obtido utilizando-se condições brandas de reação (40 bar de H2, 300 °C, 10h, 500 rpm e 10% de Pd/C). A produção de dicicloalcanos a partir da conversão catalítica do éter difenílico (DPE), um composto modelo da lignina, foi investigada utilizando-se o catalisador bifuncional Pd/HY hidrofóbico. A hidrogenação parcial do DPE foi essencial para favorecer a clivagem da ligação éter. Como principais produtos da clivagem da ligação C-O destacaram-se o fenol e a cicloexanona, os quais estão envolvidos em reações de alquilação e condensação aldólica. O equilíbrio entre a atividade de hidrogenação do metal e a função ácida da zeólita desempenhou um papel importante na maximização do rendimento de dicicloalcanos, que são de grande interesse nos processos de upgrading dos derivados da lignina para formulações de bioquerosene com excelentes propriedades a frio In recent years, one of the most challenges in the biofuel field is the production of dropin biofuels production, such as green diesel and bio-jet fuel, which are oxygen-free biofuels composed by liquid hydrocarbons. For producing bio-hydrocarbons were used, in this thesis, soy oil, cashew nut liquid shell, and diphenyl ether as a model compoundof lignin. To produce bio-hydrocarbons from soybean oil deoxygenation was performed a screening with different catalysts: zeolites HBeta and ZSM-5, FCC catalyst, which is used in the process Fluid Catalytic Cracking, palladium on activated charcoal (Pd/C) and niobium phosphate catalyst (NbOPO4). Between these, NbOPO4 catalyst showed a greatperformance in the production of drop-in biofuels. The performance of niobium phosphate was evaluated under different reaction time (3 e 5 h), catalyst amount (0 to 25%) and temperature (300 e 350 °C), using 10 bar H2 or 10 bar N2. The redox and acid properties of NbOPO4 led to the simultaneous formation of linear and branched alkanes, cycloalkanes, olefins and aromatics compounds. The optimization process led to highyields (76-97%) of hydrocarbons, mainly, in the range of bio-jet fuel (60%), followed by green diesel (40%) and biogasoline (20%). Cashew nut shell liquid (CNSL) was used as feedstock to produce a new green diesel. The influence of the reaction parameters, such as temperature (180, 250 and 300 °C), time (5 and 10 h) and pressure (10, 20, 30 and40 bar), were investigated in the upgrading reactions (deoxygenation, hydrogenation and cracking) of CNS using palladium over activated charcoal as the catalyst, Pd/C. A 98% yield of hydrocarbons corresponding to the diesel range (C15 to C21) was obtained,using mild conditions of reaction (40 bar H2, 300 °C,10 h, 500 rpm and 10% w/w of Pd/C). Production of dicycloalkanes from the catalytic conversion of diphenyl ether (DPE), a dimeric model compound of lignin, has been investigated using a hydrophobized bifunctional Pd/HY catalyst. Partial hydrogenation of DPE was found to be essential to favor the ether bond cleavage. Among the main products from the C-O cleavage isemphasized the presence of phenol and cyclohexanone, which subsequently undergo to C-C coupling reactions (alkylation and aldol condensation). The balance between hydrogenation activity of the metal and the acidic function of zeolite played an important role for maximizing the yield of dicycloalkanes, which are desirable in the upgrading oflignin-derived compounds to bio-jet fuel formulations with excellent cold properties.
Databáze: OpenAIRE