Fractal dimensions of physical phenomena associated to geometric fractal systems
Autor: | Barros, Marcelo Miranda |
---|---|
Přispěvatelé: | Bevilácqua, Luiz., Galeao, Augusto César Noronha R., Loula, Abimael Fernando Dourado, Karam Filho, José, Battista, Ronaldo Carvalho, Barra, Luis Paulo da Silva, Gonçalves, Marcelo Albano Moret Simões |
Jazyk: | portugalština |
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | Biblioteca Digital de Teses e Dissertações do LNCC Laboratório Nacional de Computação Científica (LNCC) instacron:LNCC |
Popis: | Made available in DSpace on 2015-03-04T18:57:49Z (GMT). No. of bitstreams: 1 Tese Doutorado - Marcelo Barros.pdf: 2669838 bytes, checksum: 882e9d77602451e9413c043290bd82ba (MD5) Previous issue date: 2011-06-22 The physics associated to geometric fractal systems is investigated. Discrete and continuous models, from statics and dynamics as well as computational and physical experiments help defining and evaluating dimensions associated to the physics of the systems. It is shown the relation between the mechanical dimensions (flexibility and dynamical) and the geometric fractal dimension. Moments of order 2 are shown to be useful in identifying randomness in the generation process of geometry. Mixed fractals are defined by more than one law of formation or organization: the case of alternating laws is studied. Weierstrass-Mandelbrot systems (SWM) are defined through a properly summation of senoidal functions, each with amplitude proportional to the associated period squared. A dimension for SWM is defined. An origin for 1/f noises from SWM is proposed. A new method to determine fractal dimensions is proposed. It consists in taking successive samples from the object and relating a given property with the size of the sample, called sampling method. It is tested with Koch, mixed and Weierstrass systems. Branched systems (fractal trees) in 2D are studied under the solid mechanics approach. It is shown that Murray's law corresponds to the state of constant normal stress in solids. A mechanical efficiency (stiffness x weight) of beams with cross sections given by a Sierpinski system is studied. Defined by the proportion between geometric mechanical stiffness (moment of inertia) and the cross section area squared, the efficiency is shown to grow with the advance of orders. In this way, the more porous the more efficient is the beam. Estuda-se a física associada a sistemas geométricos fractais. Por meio de modelos discreto e contínuo, da estática e da dinâmica e de experimentos computacionais e físicos definem-se e avaliam-se dimensões associadas à física dos sistemas. Mostra-se a relação existente entre as dimensões da mecânica (da flexibilidade e da dinâmica) e a dimensão fractal geométrica. Nota-se que momentos de ordem 2 são úteis na identificação de aleatoriedade no processo de geração da geometria. Definem-se fractais mistos como aqueles que apresentam mais de uma lei de formação ou organização. Estudou-se o caso que alterna entre duas ou mais leis. Definem-se sistemas de Weierstrass-Mandelbrot (SWM) a partir da soma apropriada de funções senoidais, cada uma com amplitude proporcional ao quadrado do período associado. Define-se uma dimensão para os SWM. Propõe-se uma origem para os ruídos do tipo 1/f a partir de SWM. Propõe-se um método para estimação de dimensões fractais a partir da relação entre amostras sucessivas do objeto, denominado método da amostragem. Testa-se numericamente o método nos sistemas de Koch, misto e Weierstrass, com êxito. Estuda-se sistemas ramificados (árvores fractais) em 2D sob a abordagem da mecânica dos sólidos. Mostra-se que a lei de Murray tem sua equivalência na mecânica dos sólidos pelo estado de tensão normal constante em todas as ordens. É estudada a eficiência mecânica (rigidez x peso) de vigas com seções transversais dadas por um sistema de Sierpinski. Mostra-se que a eficiência definida pela razão entre a rigidez mecânica geométrica (momento de inércia) e o quadrado da área da seção transversal aumenta com o avanço nas ordens. Desta forma, quanto mais porosa mais eficiente é a viga |
Databáze: | OpenAIRE |
Externí odkaz: |