Espectros de turbulência em terreno complexo
Autor: | Magnago, Roberto de Oliveira |
---|---|
Přispěvatelé: | Moraes, Osvaldo Luiz Leal de, Fisch, Gilberto Fernando, Degrazia, Gervásio Annes, Acevedo, Otávio Costa |
Jazyk: | portugalština |
Rok vydání: | 2008 |
Předmět: | |
Zdroj: | Biblioteca Digital de Teses e Dissertações do UFSM Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
Popis: | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Throughout this paper a spectral analysis is conducted on the superficial limit layer in complex terrains. The data used were collected in the central part of the state of Rio Grande do Sul, in the Valley of Jacuí River. A 15-meter tower, with fast-response sensors and slowresponse ones, collected data at frequencies of 10 Hz and 1 Hz, in July and August 2000, respectively. The time series were numeric analyzed through a piece of program developed in Fortran. The calculated spectra were classified according to stability class, intensity and direction of the wind speed. The spectra of the wind speed vertical component have a well-defined peak for all the analyzed conditions, except for the night series in which the wind direction is transverse to the valley axis. This same spectrum is in accordance with -5/3 Kolmogorov s law, with the beginning of the inertial sub-range in f ≈ 2 for winds that are parallel to the valley axis and any wind intensity. For winds transverse to the valley, the beginning of the inertial sub-range is in f ≈ 3. The frequencies associated with the spectral maxima are inferior to those observed in the Kansas experiment. Being superior in stable conditions when compared to convective ones in parallel conditions. In transverse conditions there is higher frequencies scattering for stable conditions. For parallel winds in stable conditions, the maximum no dimensional spectra are approximately 0.4 independently of z / L , and for convective conditions these maximum vary from 0.4 to 0.6. For transversal mean winds in stable conditions the high frequency vary from 0.4 to 0.5 and for convective conditions they are approximately 0.7. The spectra of the lateral components of velocity higher than 1m/s under stable conditions showed a cut frequency of ≈ 0.06 as initial number of this frequency, for all the cases in the low-frequency region. In the high-frequency region, the aliasing for all the parallel conditions starts at ≈ 5.0 and for transversal cases the starting point was at ≈ 10.0 . The consequences of the mesoescala movements are more important in the nocturnal boundary layer. The average time of ≈ 30 minutes renders contaminations in the computed flux measurements, since it captures mesoescala movements. The lateral spectra for convective conditions show an only spectral peak, highlighting that the importance of the thermal and mechanical effects have the same magnitude. In the region of low frequencies there is a scattering of data that could be explained by the factors associated with topographical influences. In the region of high frequencies the spectrum is in accordance with Kolmogorov s law, indicating, still under not homogeneous conditions, the presence of isotropic eddies. In convective and stable conditions with winds slower than 1m/s, the Kolmogorov s law is not applicable to most of the series; therefore such conditions were not analyzed in this study. For the different classes of z / L it is shown that the reason between vertical and horizontal spectra w u S / S fast increases until it reaches its isotropic number. For the parallel condition, we have a frequency of about f ≅ 2 and for the transverse case, about f ≅ 3. Neste trabalho faz-se uma análise espectral da turbulência na camada limite superficial em terrenos complexos. Os dados usados neste trabalho foram coletados no centro do estado do RS, no Vale do Rio Jacuí. Uma torre de 15 metros com sensores de resposta rápida e resposta lenta coletou dados com freqüências de 10 Hz e 1 Hz, respectivamente em julho e agosto de 2000. As séries temporais foram submetidas a um tratamento numérico a partir de um programa desenvolvido em Fortran. Os espectros calculados foram então classificados, conforme a classe de estabilidade, intensidade e direção da velocidade do vento. Os espectros da componente vertical da velocidade do vento, possuem um pico bem definido para todas as condições analisadas, excetuando-se as séries noturnas nas quais a direção do vento é transversal ao eixo do vale. Este mesmo espectro obedece a lei de -5/3 de Kolmogorov, com o início do sub intervalo inercial em f ≈ 2 para ventos paralelos ao eixo do vale e qualquer intensidade do vento. Para ventos transversais ao vale o início do subintervalo inercial ocorre em f ≈ 3. As freqüências associadas com os máximos espectrais são inferiores aquelas observadas no experimento e Kansas. E são maiores em condições estáveis do que em condições convectivas para condições paralelas. Para condições transversais existe um maior espalhamento nas freqüências para as condições estáveis. Para ventos paralelos em condições estáveis, os máximos espectrais adimensionais, são aproximadamente iguais a 0,4 independente de z / L , e para condições convectivas, estes máximos variam de 0,4 a 0,6. Para ventos médios transversais em condições estáveis, os máximos variam entre 0,4 e 0,5 e para condições convectivas, são de aproximadamente 0,7. Os espectros das componentes laterais da velocidade com ventos maiores que 1 m/s sobre condições estáveis mostraram uma freqüência de corte de ≈ 0,06 como valor de início desta freqüência para todos os casos na região de baixas freqüências. Na região de altas freqüências, o aliasing , para o caso de condições paralelas tem início em ≈ 5,0 e para os casos transversais o início foi em ≈ 10,0 . A conseqüência dos movimentos de mesoescala são mais importantes na camada limite noturna. O tempo de média de ≈ 30 minutos leva à contaminações do fluxo computado por capturar movimentos de mesoescala. Os espectros laterais para condições convectivas mostraram um único pico espectral, evidenciando-se que a importância dos efeitos térmicos e mecânicos são de mesma magnitude. Na região de baixas freqüências existe espalhamento de pontos que são explicáveis por fatores associados às influências topográficas. Na região de altas freqüências o espectro segue a lei de Kolmogorov indicando, ainda sobre condições de inomogeneidade, a presença de vórtices isotrópicos. Para condições convectivas e estáveis com ventos médios menores que 1 m/s, a lei de Kolmogorov não é verificada para a maioria das séries, e por esta razão não foi analisada neste estudo. Para as diferentes classes de z / L mostra-se que a razão entre os espectros vertical e horizontal w u S / S cresce rapidamente até atingir seu valor isotrópico. Para a condição paralela, temos uma freqüência em torno de f ≅ 2 e para o caso transversal, em torno de f ≅ 3. |
Databáze: | OpenAIRE |
Externí odkaz: |