Avaliação em massa com modelos de aprendizado de máquina aplicados aos terrenos urbanos do Município de Fortaleza

Autor: Oliveira, Antônio Augusto Ferreira de
Přispěvatelé: Simonassi, Andrei Gomes
Jazyk: portugalština
Rok vydání: 2020
Předmět:
Zdroj: Repositório Institucional da Universidade Federal do Ceará (UFC)
Universidade Federal do Ceará (UFC)
instacron:UFC
Popis: This study concerns the mass appraisal of the market value of land in the city of Fortaleza. It is made by using machine learning models, from a sample with more than 8 thousand observations collected through an urban observatory of market values in the period from 2015 to 2019. An extensive exploratory analysis is carried out for the definition and choice of the explanatory variables of this evaluation, having as response variable the unit price of land. Subsequently, ordinary least squares regression is studied as a preliminary model to be outperformed by machine learning models, random forests and XGBoost. For each of these, the assumptions are assessed, mainly for the ordinary least squares model, due to its difficulty in meeting all its premises in real estate mass appraisal. The estimates of this model, with the unit price on a natural-log scale, are consistent with what is expected in practice and observed in the previous exploratory analysis. For machine learning models, random forests and XGBoost, the relationships among bias-variance trade-off, power of predictive generalization and overfitting are verified. The most important features to explain the unit prize of land are remarkably similar in both models. The XGBoost model outperforms the others in all the performance measures evaluated. At the end, a market value map is proposed for all georeferenced land parcels in Fortaleza. O estudo realiza uma avaliação em massa dos terrenos do Município de Fortaleza utilizando modelos de aprendizado de máquina (machine learning), a partir de uma amostra com mais de 8.000 informações providas pelo observatório urbano de valores da Secretaria das Finanças de Fortaleza no período de 2015 a 2019. É realizada uma análise exploratória extensiva para a definição e escolha das variáveis explicativas dessa avaliação, tendo como variável resposta o preço unitário dos terrenos. Posteriormente, são avaliados três modelos: regressão linear múltipla, florestas aleatórias e XGBoost. Para cada um destes, verifica-se os pressupostos de aplicação, principalmente para o modelo estimado por Mínimos Quadrados Ordinários, dada sua dificuldade de atendimento de todos os seus pressupostos na avaliação em massa de imóveis de toda uma municipalidade. Este modelo, com o preço unitário na escala logaritmo natural, apresenta as estimativas dos seus coeficientes condizentes com o esperado na prática e observado na análise exploratória prévia. Para os modelos de aprendizado de máquina, florestas aleatórias e XGBoost, são equacionados a relação entre viés-variância, poder de generalização preditiva e o sobreajustamento. O conjunto de atributos mais importantes para explicação do comportamento dos preços unitários dos terrenos obtido com ambos são muito similares. O modelo XGBoost apresentou o melhor desempenho em todos as métricas avaliadas. Ao final, apresenta-se uma proposição de planta genérica de valores (PGV) para todas as parcelas territoriais georrefenciadas do Município de Fortaleza.
Databáze: OpenAIRE