O modelo de McCormack no escoamento de gases rarefeitos
Autor: | Tres, Anderson |
---|---|
Přispěvatelé: | Knackfuss, Rosenei Felippe, Reichert, Janice Teresinha, Oliveira, José Vanderlei Prestes de |
Jazyk: | portugalština |
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | Biblioteca Digital de Teses e Dissertações do UFSM Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
Popis: | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior In this paper, we present numerical results for macroscopic quantities of interest (velocity profile, the heat ow profile and shear stress) for the ow of a binary mixture of rarefied gases in microchannels of arbitrary planes, defined by two infinite parallel lates without symmetry condition. The ow of gas mixture is due to a constant pressure gradient (Poiseuille's Problem), a temperature gradient (Problem Thermal-Creep) and a density gradient (Fuzzy Problem) in the direction parallel to the surface surrounding gases. The kinetic theory for the ow of gas mixture is described by a linearized model of the Boltzmann equation, the McCormack model. To better describe the interaction between gas and wall is used by Maxwell kernel in the terms of a single accommodation coefficient and the Cercignani-Lampis kernel defined in terms of the coefficients of accommodation of tangential momentum accommodation coefficient and the kinetic energy corresponding to normal velocity, which according to literature is a more appropriate model than the usual model that involves specular and diffuse. In seeking solutions to the problem proposed, it uses a analytical version of the discrete ordinates method (ADO), based an arbitrary quadrature scheme, whereby it is determined a problem of eigenvalues and their constant separation. The numerical calculations are performed for three mixtures of noble gases: Neon-Argon, Helium-Argon and Helium-Xenon, and computationally implemented using the FORTRAN computer program. Neste trabalho, apresenta-se resultados numéricos para grandezas macroscropicas de interesse (perfil de velocidade, perfil do fluxo de calor e tensão de cisalhamento) relativas ao fluxo de uma mistura binária de gases de rarefação arbitrária em microcanais planos, definidos por duas placas paralelas infinitas sem condição de simetria. O fluxo da mistura gasosa ocorre devido a um gradiente constante de pressão (Problema de Poiseuille), um gradiente de temperatura (Problema Creep-Térmico) e um gradiente de densidade (Problema Difuso), na direção paralela a superfície que cerca os gases. A teoria cinética para o fluxo da mistura gasosa é descrita por um modelo linearizado da equação de Boltzmann, o modelo de McCormack. Para melhor descrever o processo de interação entre o gás e a parede utiliza-se o núcleo de Maxwell em termos de um único coeficiente de acomodação e o núcleo de Cercignani-Lampis definido em termos dos coeficientes de acomodação do momento tangencial e o coeficiente de acomodação da energia cinética correspondendo a velocidade normal, que segundo a literatura é um modelo mais apropriado do que o usual modelo que envolve reflexão especular e difusa. Na busca de soluções do problema proposto, usa-se uma versão analítica do método de ordenadas discretas (ADO), baseada num esquema de quadratura arbitrário, segundo a qual determina-se um problema de autovalores e respectivas constantes de separação. Os cálculos numéricos são realizados para três misturas de gases nobres: Neônio-Argônio, Hélio-Argônio e Hélio-Xenônio, e implementados computacionalmente através do programa computacional FORTRAN. |
Databáze: | OpenAIRE |
Externí odkaz: |