Pre-planting weed detection based on ground field spectral data

Autor: Pott, Luan Pierre
Přispěvatelé: Amado, Telmo Jorge Carneiro, Ciampitti, Ignacio Antonio, Bianchi, Mario Antonio
Jazyk: portugalština
Rok vydání: 2019
Předmět:
Zdroj: Biblioteca Digital de Teses e Dissertações do UFSM
Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
Popis: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES According the concept of precision agriculture and new technologies for agriculture, there were several studies to improve tools at an extremely important stage in crop management, which is the identification and control of weeds. Therefore, the spatial variability of weed distribution is not being considered in deciding their management in most cases. In this sense, the objective of this study was: (i) the use of a hyperspectral sensor to identify more efficient spectral bands in distinguishing weeds from other targets (sandy soil, clay soil and plant residues) in pre-planting; (ii) elaborate vegetation indices to evaluate the accuracy of weed distinction and other targets. Two databases were used, the first from a field experiment conducted at the Federal University of Santa Maria as training data, and the second database was built with readings on-farm as validation data. The HandHeld 2 spectrometer, ASD®, with wavelengths of 325-1075nm, was used to perform spectral curves readings of weed species and other targets: clay soil, sandy soil, and residues. Subsequently, the wavelengths were grouped into spectral bands, as well as the calculation of vegetation indices for data analysis. The results showed that the data collected in the field experiment (training data) and in the farms (validation data) obtained similar spectral curves, where the red and near infrared spectral bands obtained higher accuracy compared to the other bands. The vegetation indices used increased the discrimination accuracy in relation to the isolated spectral bands. The work provides a valid tool for distinguishing weeds from other targets using proximal sensor pre-sowing of crops based on spectral curves. Visto o conceito de agricultura de precisão e as novas tecnologias para a agricultura, tem-se a busca do aprimoramento de ferramentas de uma etapa de extrema importância no manejo de culturas agrícolas, que é a identificação e controle de plantas daninhas. Para tanto, a variabilidade espacial da distribuição das plantas daninhas não está sendo consideradas na decisão de seus manejos na maioria dos casos. Neste sentido, objetivou-se com este trabalho: (i) a utilização de sensor hiperespectral para identificar bandas espectrais mais eficazes na distinção de plantas daninhas em relação à outros alvos (solo arenoso, solo argiloso e resíduos vegetais) em pré-semeadura; (ii) calcular índices de vegetação para avaliação da acurácia da distinção de plantas daninhas e outros alvos. Foram utilizados dois bancos de dados, o primeiro provindo de experimento de campo realizado na Universidade Federal de Santa Maria para calibração do modelo, e o segundo banco de dados foi construído com leituras em fazenda de produtores rurais, para validação do modelo. Foi utilizado o espectrorradiômetro HandHeld 2, ASD®, com comprimentos de onda de 325-1075nm, para realizar leituras das curvas espectrais de espécies de plantas daninhas e outros alvos: solo argiloso, solo arenoso, e resíduos vegetais. Posteriormente foram agrupados os comprimentos de onda em bandas espectrais, bem como cálculo de índices de vegetação para análise dos dados. Os resultados demonstraram que os dados coletados no experimento de campo (calibração) e nas fazendas (validação) obtiveram curvas espectrais similares, onde as bandas espectrais do vermelho e do infravermelho próximo obtiveram maior acurácia comparado com as outras bandas. Os índices de vegetação utilizados aumentaram a acurácia da discriminação em relação à bandas espectrais isoladas. O trabalho fornece uma válida ferramenta para distinção de plantas daninhas de outros alvos com a utilização de sensor proximal em pré-semeadura de culturas agrícolas baseado em curvas espectrais.
Databáze: OpenAIRE