Proposition and evaluation of different performance indicators for image processing algorithms
Autor: | Romualdo, Kamilla Vogas |
---|---|
Přispěvatelé: | Silva Neto, Antônio José da, Cidade, Geraldo Antônio Guerrera, Pacheco, Marcus Peigas, Tenenbaum, Roberto Aizik, Zubelli, Jorge Passamani |
Jazyk: | portugalština |
Rok vydání: | 2006 |
Předmět: |
Atomic force microscopy
Image restoration Tikhonov s regularization Avaliadores humanos Performance measures Human referees Processamento de imagens - Algoritmos Microscopia de força atômica CIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADA [CNPQ] Image processing - Algorithms Restauração de imagens Indicadores matemáticos Regularização de Tikhonov |
Zdroj: | Biblioteca Digital de Teses e Dissertações da UERJ Universidade do Estado do Rio de Janeiro (UERJ) instacron:UERJ |
Popis: | Submitted by Boris Flegr (boris@uerj.br) on 2021-01-07T14:40:27Z No. of bitstreams: 1 DissertacaoKamillaFinal.pdf: 6885531 bytes, checksum: c0e496a831581617093ab2118fdf3320 (MD5) Made available in DSpace on 2021-01-07T14:40:27Z (GMT). No. of bitstreams: 1 DissertacaoKamillaFinal.pdf: 6885531 bytes, checksum: c0e496a831581617093ab2118fdf3320 (MD5) Previous issue date: 2006-08-22 The restoration of images acquired with Atomic Force Microscopes (AFM) consists on a very intense research area in nanotechnology. During the acquisition process the AFM images are subjected to the constraints imposed by the experimental apparatus usually presenting poor signal to noise ratios as well as the effects of tip-sample interaction. In order to process images related to biological structures, several restoration algorithms have been proposed and tested, and in the present dissertation is used a method based in Tikhonov´s regularization. Throughout the development of several restoration algorithms it has been observed that the usual performance measures did not correspond to the human visual perception of the restored images. In the present dissertation are proposed and evaluated several performance measures for restoration algorithms used in the post-processing of images acquired in nanoscale with AFM as well as artificial images created in order to test the performance measure used. Usually used performance measures are investigated as well as measures based on Bregman distances. The research was conducted in two parts. First a set of images was generated and restored using Tikhonov´s regularization functional, being then distributed to 50 human referees. Their task consisted in evaluating the images in order to grade how close the restored images were to the original images, in respect to human visual perception. The second part of the research consisted in the implementation of a computational program to perform the computation of the mathematical performance measures. Afterwards a comparison was performed of the mathematical performance measures with respect to the visual perception of the human referees, being the latter essentially qualitative which was then transformed in a numerical scale in order to allow the comparison with the mathematical measures. It was observed that depending on the parameters used in the restoration algorithm based in Tikhonov´s regularization functional and the type of the restored image, the mathematical performance measures based on Bregman distances present better results than those obtained with other usual performance measures such as the Mean Square Error (MSE) yielding to a better agreement with the evaluation performed by the human referees. Uma área de intensa atividade de pesquisa em nanotecnologia está relacionada à restauração de imagens obtidas através dos microscópios de força atômica (AFM). Durante o processo de aquisição as imagens de AFM estão sujeitas às limitações impostas pela instrumentação utilizada e costumam apresentar pobres relações sinal/ruído, bem como a manifestação dos efeitos degenerativos relacionados à interação entre o tip e a amostra. Buscando tratar imagens obtidas de estruturas biológicas, tem sido propostos e testados diversos algoritmos de restauração, e nesta dissertação é utilizado um método baseado na Regularização de Tikhonov. Ao longo do desenvolvimento de diversos algoritmos de restauração foi observado que os indicadores matemáticos usuais para avaliação de desempenho não correspondiam à percepção visual relativa às imagens restauradas. Este trabalho propõe e avalia diferentes indicadores de desempenho para algoritmos de restauração utilizados no pós processamento de imagens obtidas em escala nanométrica por microscopia de força atômica e imagens artificiais criadas especialmente para testar o indicador de desempenho utilizado. São investigados indicadores usuais empregados em restauração de imagens, sendo também proposta a implementação de indicadores baseado nas distâncias de Bregman. O trabalho foi dividido em duas partes. Primeiramente foi gerado e restaurado um conjunto de imagens utilizando o funcional de regularização de Tikhonov, sendo distribuídas entre 50 pessoas que foram chamadas de avaliadores humanos. A tarefa consistia em avaliar as imagens, procurando identificar o quanto as imagens restauradas se aproximavam das imagens originais, no que se relaciona à visão humana. A segunda parte consistiu na implementação de uma rotina computacional para o cálculo de vários indicadores matemáticos. Posteriormente foi realizada a comparação dos resultados obtidos através dos indicadores matemáticos com a percepção visual dos avaliadores humanos, sendo esta última essencialmente qualitativa, sendo então transformada em uma escala numérica para permitir então a comparação com os indicadores matemáticos. Observou-se que dependendo dos parâmetros utilizados no algoritmo de restauração baseado no funcional de regularização de Tikhonov e dos tipos de imagens restauradas, os indicadores baseados nas Distâncias de Bregman apresentam melhores resultados do que aqueles obtidos com indicadores tradicionais, como por exemplo o erro médio quadrático (MSE Mean Square Error), levando a uma concordância maior destes resultados quando comparados com a avaliação feita pelos avaliadores humanos. |
Databáze: | OpenAIRE |
Externí odkaz: |