Articulation and changes of meaning in situations of treatment of symbolic representations of mathematical objects

Autor: Rojas Garzón, Pedro Javier
Přispěvatelé: D' Amore, Bruno
Jazyk: Spanish; Castilian
Rok vydání: 2012
Předmět:
Zdroj: RIUD: repositorio U. Distrital
Universidad Distrital Francisco José de Caldas
instacron:Universidad Distrital Francisco José de Caldas
Popis: En el proceso de enseñanza y aprendizaje de las matemáticas se hace fundamental el uso de representaciones de los objetos en una variedad de sistemas semióticos de representación, más específicamente en diversidad de registros semióticos (Duval, 1999), pero en especial se hace necesario apropiarse de posibilidades para transformar una representación semiótica de un objeto matemático en otra. Tales transformaciones entre representaciones semióticas se dan tanto al interior de un mismo registro de representación semiótica como entre registros diferenciados, transformaciones que Duval denomina tratamientos y conversiones, respectivamente. Duval reconoce la conversión como una de las operaciones cognitivas fundamentales para el acceso del sujeto a una verdadera comprensión, y centra la mirada en las dificultades de aprendizaje de las matemáticas en dicho proceso. No obstante, en matemáticas, las transformaciones de tratamiento entre representaciones semióticas –al interior de la variedad de registros utilizados–, no sólo resultan fundamentales sino que podrían ser fuente de dificultades en los procesos de comprensión de las matemáticas por parte de los estudiantes. Usualmente se afirma que los problemas cognitivos están relacionados con la conversión, mientras que lo relacionado con el tratamiento no suele considerarse como un problema relevante para la construcción del objeto matemático. Es decir, este autor destaca explícitamente la complejidad que conlleva el reconocimiento de un mismo objeto a través de representaciones completamente diferentes, en tanto producidas en sistemas semióticos heterogéneos (Conversión), pero no destaca la complejidad asociada a transformaciones realizadas al interior de un mismo sistema semiótico de representación (tratamiento). La presente investigación está orientada a documentar el fenómeno relacionado con las dificultades que encuentran algunos estudiantes para articular los sentidos asignados a representaciones semióticas de un mismo objeto matemático, obtenidas mediante tratamiento. Se realiza una descripción y un análisis de los procesos de asignación de sentidos de nueve estudiantes, seis de grado 9º y tres de grado 11º, con base en el trabajo realizado por ellos en tres pequeños grupos en relación con tareas específicas, en las que se indaga por el sentido asignado a ciertas representaciones semióticas y se requiere realizar transformaciones de tratamiento. Se asume un enfoque de investigación cualitativo, realizando un análisis de tipo descriptivo-interpretativo, desde diferentes perspectivas teóricas, tomando como referencia trabajos de Bruno D’Amore, Raymond Duval, Juan D. Godino y Luis Radford. Así, este trabajo se sitúa en un contexto semiótico, y estudia de manera general la relación semiosis-noesis en la construcción de conocimiento matemático por parte de estudiantes de grados 9º y 11º de la educación básica y media, respectivamente; estudio que, sin ser exhaustivo, incluye aspectos sobre la actividad matemática, la comunicación sobre objetos matemáticos emergentes y la construcción cognitiva de los objetos matemáticos. In the process of teaching and learning of mathematics the use of representations of objects in a variety of semiotic representation systems, more specifically in diversity of semiotic records (Duval, 1999), but especially it becomes necessary to appropriate possibilities to transform a semiotic representation of one mathematical object in another. Such transformations between semiotic representations they occur both within the same semiotic representation register as between differentiated records, transformations that Duval calls treatments and conversions, respectively. Duval recognizes conversion as one of the fundamental cognitive operations for the subject's access to a true understanding, and focuses on the difficulties of mathematics learning in this process. However, in mathematics, the treatment transformations between semiotic representations - within the variety of records used - not only are they fundamental, but they could be source of difficulties in the processes of understanding mathematics by students. It is usually stated that cognitive problems are related to conversion, while what is related to treatment is not usually considered as a relevant problem for the construction of the mathematical object. That is, this author stands out explicitly the complexity involved in recognizing the same object through of completely different representations, as produced in semiotic systems heterogeneous (Conversion), but does not highlight the complexity associated with transformations made within the same semiotic system of representation (treatment). The present investigation is oriented to document the phenomenon related to the difficulties encountered by some students to articulate the senses assigned to semiotic representations of the same mathematical object, obtained by treatment. A description and analysis of the allocation processes of senses of nine students, six of 9th grade and three of 11th grade, based on work performed by them in three small groups in relation to specific tasks, in which inquire about the meaning assigned to certain semiotic representations and it is required to perform treatment transformations A qualitative research approach is assumed, performing a descriptive-interpretative analysis, from different perspectives theoretical, taking as reference works by Bruno D’Amore, Raymond Duval, Juan D. Godino and Luis Radford. Thus, this work is situated in a semiotic context, and studies in a general way the relationship semiosis-noesis in the construction of mathematical knowledge by students of 9th and 11th grades of basic and secondary education, respectively; study that without being exhaustive, includes aspects about mathematical activity, communication about objects emerging mathematicians and the cognitive construction of mathematical objects.
Databáze: OpenAIRE