Modelos multivariados de análise discriminante como ferramenta de previsão de epidemias de dengue

Autor: Nóbrega, Diogo Medeiros
Přispěvatelé: Araujo, Wellington Candeia de, Dantas, Kézia de Vasconcelos Oliveira, Bublitz, Frederico Moreira, Milanez, Alysson Filgueira
Jazyk: portugalština
Rok vydání: 2019
Předmět:
Zdroj: Biblioteca Digital de Teses e Dissertações da UEPB
Universidade Estadual da Paraíba (UEPB)
instacron:UEPB
Popis: Submitted by Jean Medeiros (jeanletras@uepb.edu.br) on 2019-09-13T12:16:49Z No. of bitstreams: 1 PDF - Diogo Medeiros Nóbrega.pdf: 2652648 bytes, checksum: cf49b55aad8b7a00786b8dd776f29bc3 (MD5) Approved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2019-10-10T14:03:16Z (GMT) No. of bitstreams: 1 PDF - Diogo Medeiros Nóbrega.pdf: 2652648 bytes, checksum: cf49b55aad8b7a00786b8dd776f29bc3 (MD5) Made available in DSpace on 2019-10-10T14:03:16Z (GMT). No. of bitstreams: 1 PDF - Diogo Medeiros Nóbrega.pdf: 2652648 bytes, checksum: cf49b55aad8b7a00786b8dd776f29bc3 (MD5) Previous issue date: 2019-06-04 This research deals with the use of Discriminant Analysis and all its assumptions from variables related to basic sanitation actions, linking them to the incidence of dengue cases in the Brazilian States from 2013 to 2017 to model a discriminant prediction function capable of classifying the states into low-, medium- and high-level groups of dengue incidence. For the analyses, SPSS software was used. Epidemics generate high costs for health services, and the precarious infrastructure of public sanitation may directly contribute to growth in dengue cases. The use of statistical methods makes the investigation processes more direct and accurate, which makes it possible to perceive worrying circumstances and, thus, to anticipate and act for its control. In this work, the theoretical statistical development and the analyses are described. The features were extracted from epidemiological bulletin of the Ministry of Health and the time series of basic sanitation actions of the Ministry of Cities of the last five years available. It was identified that the variables Sewage Collection Index (ICE), Quantity of Municipalities Served with Sanitary Sewage (QMAES), Total Expenditure with Sanitation including water and sewage (DTS) and Quantity of Municipalities Served with Water Supply (QMAAA) were the most statistically significant. Finally, it was found that the separation between the low, medium and high incidence groups was statistically significant according to the tests, and the discriminant function reached a level of accuracy of 86.9% of the original High Incidence cases in their respective groups. Esta pesquisa trata da utilização da Análise Discriminante e todos os seus pressupostos a partir de variáveis referentes a ações de saneamento básico, relacionando-as à incidência de casos de dengue em todos os Estados Brasileiros no período de 2013 a 2017 para modelar uma função discriminante de previsão capaz de classificar os Estados em grupos de baixo, médio e alto nível de incidência de dengue. Para as análises utilizou-se o software SPSS. Epidemias geram altos custos para os serviços de saúde, e a infraestrutura precária dos serviços públicos de saneamento básico podem contribuir diretamente para o crescimento nos casos de dengue. O uso de métodos estatísticos torna os processos de investigação mais diretos e apurados, o que possibilita perceber circunstâncias preocupantes e, dessa forma, se antecipar e agir para seu controle. Neste trabalho, são descritos o desenvolvimento teórico estatístico e as análises realizadas. As variáveis foram extraídas do boletim epidemiológico do Ministério da Saúde e da série histórica de ações de saneamento básico do Ministério das Cidades dos últimos 05 anos disponíveis. Identificou-se que as variáveis Índice de Coleta de Esgoto (ICE), Quantidade de Municípios Atendidos com Esgotamento Sanitário (QMAES), Despesa Total com Saneamento incluindo água e esgoto (DTS) e Quantidade de Municípios Atendidos com Abastecimento de Água (QMAAA) foram as mais estatisticamente significativas. Ao fim constatou-se que a separação entre os grupos de baixa, média e alta incidência é estatisticamente significativa de acordo com os testes, tendo a função discriminante alcançado um nível de acerto de 86,9% dos casos originais de Alta Incidência nos seus respectivos grupos.
Databáze: OpenAIRE