Optimización del proceso de producción de etanol de segunda generación utilizando sacarificación y fermentación simultánea a partir de mezclas de residuos lignocelulósicos
Autor: | Sánchez Acosta, Deyanira Nohely, Villavicencio Vera, Lezzie Valeria, Andrade Díaz, Christhel, Rosero Delgado, Ernesto Alonso |
---|---|
Jazyk: | Spanish; Castilian |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 No. 7 (2022): Theoretical and methodological plurality; 60-70 Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 Núm. 7 (2022): Pluralidad teórica y metodológica; 60-70 Sapienza: International Journal of Interdisciplinary Studies; v. 3 n. 7 (2022): Pluralidade teórica e metodológica; 60-70 Sapienza (Curitiba) Sapienza Grupo Editorial instacron:SAPIENZA |
ISSN: | 2675-9780 |
DOI: | 10.51798/sijis.v3i7 |
Popis: | Ecuador is positioned as the first exporter of fine aroma cocoa, representing more than 62% of the world production of this fruit, which favors an abundant availability of recoverable residues from this plant. The lignocellulosic composition of these residues gives them the ability to be processed and transformed into bioethanol. In this research, cocoa shell, stem and leaf residues were conditioned (dried and powdered) and subjected to a simultaneous saccharification and fermentation process for the production of second-generation bioethanol. The conditioned biomass was subjected to a pretreatment of alkaline hydrolysis (3% NaOH) with steam explosion at 121ºC for 90 min at 1 atm. The hydrolyzed biomass was subjected to an enzymatic hydrolysis process using the cellulase enzyme from Aspergillus niger from Sigma Aldrich and Safale S-04 yeast was used simultaneously for the fermentation of sugars to bioethanol. The treated samples were filtered and centrifuged and the alcohol content was quantified by gas chromatography. Simultaneous saccharification and fermentation conditions were optimized through a multilevel factorial design, using the response surface methodology. The design included nine base runs (all in triplicate), where three enzyme concentrations (5, 15 and 25 FPU/g) were evaluated for the five grams of initial load of dry solid material (DSM) and three temperatures (27, 37 and 47°C). The maximum production of bioethanol (0.00240 μL/g) was reached with the optimal conditions of 23.5 FPU and 31.7 °C. A final run was carried out using the optimal conditions for a higher biomass load (20 g), reaching a maximum concentration of second-generation bioethanol of 0.11 mL/L. Ecuador se encuentra posicionado como primer exportador de cacao fino de aroma, representando más del 62% de la producción mundial de este fruto, lo que propicia una abundante disponibilidad de residuos valorizables de esta planta. La composición lignocelulósica de estos residuos les confiere la capacidad de ser procesados y transformados a bioetanol. En esta investigación, los residuos de cáscaras, tallos y hojas de cacao fueron acondicionadas (secadas y pulverizadas) y sometidas a un proceso de sacarificación y fermentación simultánea para la producción de bioetanol de segunda generación. La biomasa acondicionada fue sometida a un pretratamiento de hidrólisis alcalina (NaOH al 3%) con explosión de vapor a 121ºC por 90 min a 1 atm. La biomasa hidrolizada se sometió a un proceso de hidrólisis enzimática empleando la enzima celulasa de Aspergillus niger de Sigma Aldrich y se utilizó simultáneamente la levadura Safale S-04 para la fermentación de los azúcares a bioetanol. Las muestras tratadas fueron filtradas y centrifugadas y el contenido de alcohol se cuantificó mediante cromatografía gaseosa. Las condiciones de sacarificación y fermentación simultánea fueron optimizadas mediante un diseño factorial multinivel, empleando la metodología de superficie de respuesta. El diseño incluyó nueve corridas base (todas por triplicado), donde se evaluaron tres concentraciones enzimáticas (5, 15 y 25 FPU/g) para los cinco gramos de carga inicial de material sólido seco (MSS) y tres temperaturas (27, 37 y 47°C). La maximiza producción de bioetanol (0,00240 μL/g) se alcanzó con las condiciones óptimas de 23,5 FPU y 31,7 °C. Se realizó una última corrida empleando las condiciones óptimas para una mayor carga de biomasa (20 g), alcanzando una concentración máxima de bioetanol de segunda generación de 0,11 mL/L. O Equador se posiciona como o primeiro exportador de cacau de aroma fino, representando mais de 62% da produção mundial desta fruta, o que favorece uma disponibilidade abundante de resíduos recuperáveis desta planta. A composição lignocelulósica desses resíduos lhes confere a capacidade de serem processados e transformados em bioetanol. Nesta pesquisa, resíduos de casca, caule e folhas de cacau foram condicionados (secos e em pó) e submetidos a um processo simultâneo de sacarificação e fermentação para a produção de bioetanol de segunda geração. A biomassa condicionada foi submetida a um pré-tratamento de hidrólise alcalina (3% NaOH) com explosão de vapor a 121ºC por 90 min a 1 atm. A biomassa hidrolisada foi submetida a um processo de hidrólise enzimática utilizando a enzima celulase de Aspergillus niger da Sigma Aldrich e a levedura Safale S-04 foi utilizada simultaneamente para a fermentação dos açúcares a bioetanol. As amostras tratadas foram filtradas e centrifugadas e o teor de álcool foi quantificado por cromatografia gasosa. As condições simultâneas de sacarificação e fermentação foram otimizadas através de um planejamento fatorial multinível, utilizando a metodologia de superfície de resposta. O desenho incluiu nove corridas de base (todas em triplicata), onde foram avaliadas três concentrações de enzimas (5, 15 e 25 FPU/g) para os cinco gramas de carga inicial de material sólido seco (DSM) e três temperaturas (27, 37 e 47°C). A produção máxima de bioetanol (0,00240 μL/g) foi alcançada com as condições ótimas de 23,5 FPU e 31,7 °C. Uma corrida final foi realizada utilizando as condições ideais para uma maior carga de biomassa (20 g), atingindo uma concentração máxima de bioetanol de segunda geração de 0,11 mL/L. |
Databáze: | OpenAIRE |
Externí odkaz: |