Investigation of the anisotropic and conventional magnetocaloric effect in the system Er (y-1) Ho (y) N

Autor: Alvarenga, Thiago da Silva Teixeira
Přispěvatelé: Perlingeiro, Pedro Jorge Von Ranke, Neves, Marcelo Azevedo, Oliveira, Nilson Antunes de, Carvalho, Alexandre Magnus Gomes, Sousa, Vinícius da Silva Ramos de
Jazyk: portugalština
Rok vydání: 2012
Předmět:
Zdroj: Biblioteca Digital de Teses e Dissertações da UERJ
Universidade do Estado do Rio de Janeiro (UERJ)
instacron:UERJ
Popis: Submitted by Boris Flegr (boris@uerj.br) on 2021-01-06T21:13:04Z No. of bitstreams: 1 Dissertacao Thiago da Silva Teixeira Alvarenga2012.pdf: 3296642 bytes, checksum: 6ab5cf5cf0d87b6c6e504e663a15c611 (MD5) Made available in DSpace on 2021-01-06T21:13:04Z (GMT). No. of bitstreams: 1 Dissertacao Thiago da Silva Teixeira Alvarenga2012.pdf: 3296642 bytes, checksum: 6ab5cf5cf0d87b6c6e504e663a15c611 (MD5) Previous issue date: 2012-10-29 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior The magnetocaloric effect, magnetic refrigeration base, is characterized by two quantities: the isothermal entropy change (ΔST) and the adiabatic temperature change (ΔTad) which can be obtained through variations in the intensity of a magnetic field applied. In systems which present magnetic anisotropy, one can define anisotropic magnetocaloric effect, which, by definition, is calculated through the variation the direction of application of a magnetic field whose intensity remains fixed. In the materials of our interest, the magnetocaloric effect is studied theoretically starting from a model Hamiltonian which takes into account the magnetic lattice (that can be composed of several magnetic sublattices coupled), crystalline lattice and the dynamics of the conduction electrons. In the magnetic hamiltonian are considered the exchange interactions, Zeeman and crystalline electrical field (this latter responsible for the magnetic anisotropy). Recently, we studied the conventional magnetocaloric effect and anisotropic magnetocaloric effect in mononitrides compounds with rare earths, namely: o(Y)Er(1-Y)N for concentrations y= 0,1,0.5 e 0.75 . Comparisons between our theoretical results and experimental data for EMC were quite satisfactory [26].Furthermore, several theoretical predictions how to the existence of a phase ferrimagnetic in the system Ho(y)Er(1-y)N (for concentration ) and spin reorientations in the sublattices of Ho and Er were made [25]. O efeito magnetocalórico, base da refrigeração magnética, é caracterizado por duas quantidades: a variação isotérmica da entropia (ΔST) e a variação adiabática da temperatura (ΔTad) as quais podem ser obtidas sob variações na intensidade de um campo magnético aplicado. Em sistemas que apresentam anisotropia magnética, pode‐se definir o efeito magnetocalórico anisotrópico, o qual, por definição, é calculado através da variação na direção de aplicação de um campo magnético cuja intensidade se mantém fixa. Nos materiais de nosso interesse, o efeito magnetocalórico é estudado teoricamente partindo de um hamiltoniano modelo que leva em conta a rede magnética (que pode ser composta por diversas sub-redes magnéticas acopladas), rede cristalina e a dinâmica dos elétrons de condução. No hamiltoniano magnético são consideradas as interações de troca, Zeeman e campo cristalino (esta ultima responsável pela anisotropia magnética). Recentemente, estudamos o efeito magnetocalórico convencional e o efeito magnetocalórico anisotrópico nos compostos mononitretos com terras-raras, a saber: Ho(y)Er(1-y)N para as concentrações y= 0,1,0.5 e 0.75. Comparações entre nossos resultados teóricos e os dados experimentais para o EMC foram bastante satisfatórias [3,9]. Além disso, diversas predições teóricas como a existência de uma fase ferrimagnética no sistema Ho(y)Er(1-y)N (para a concentração y=0.5) e reorientações de spin nas sub-redes do Ho e Er foram feitas [25].
Databáze: OpenAIRE