Rastreamento de objetos 3D em imagens RGB-D usando otimização por enxame de partículas
Autor: | SANTOS JÚNIOR, José Guedes dos |
---|---|
Přispěvatelé: | OLIVEIRA JUNIOR, Wilson Rosa de, LIMA, João Paulo Silva do Monte, MIRANDA, Péricles Barbosa Cunha de, TEIXEIRA, João Marcelo Xavier Natário |
Jazyk: | portugalština |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Biblioteca Digital de Teses e Dissertações da UFRPE Universidade Federal Rural de Pernambuco (UFRPE) instacron:UFRPE |
Popis: | Submitted by Mario BC (mario@bc.ufrpe.br) on 2019-02-26T13:40:02Z No. of bitstreams: 1 Jose Guedes dos Santos Junior.pdf: 2344381 bytes, checksum: 6cc5d3b70f76df0f49cc0ecfbe593e0a (MD5) Made available in DSpace on 2019-02-26T13:40:02Z (GMT). No. of bitstreams: 1 Jose Guedes dos Santos Junior.pdf: 2344381 bytes, checksum: 6cc5d3b70f76df0f49cc0ecfbe593e0a (MD5) Previous issue date: 2018-02-27 The term Augmented Reality is used to specify the systems that have a technology of inserting virtual objects in real scenes, allowing an increase in the amount of information present in the former real environment. In the final result of an Augmented Reality scene footage, the degree of naturalness of this insertion is related not only to the rendering quality of the virtual objects, but also to the accuracy with which the pose of the real objects in relation to the camera is known during the footage, that is, it also depends on the quality of the tracking of these objects. Artificial markers can facilitate and increase the quality of object tracking, however in some situations it is not always possible or desirable to manually insert markers in the scene to be tracked. The solution adopted has been to use features present naturally in the objects belonging to the scene, this type of tracking is called markerless tracking. Some markerless tracking techniques use prior knowledge of the objects to be tracked, this is done by obtaining virtual models of those objects in advance. There are several model-based tracking methods, some of which use search and optimization algorithms such as particle filter or particle swarm optimization to evaluate sets of candidate poses during tracking, these methods have shown very good results. When capturing a scene with a common digital camera, there is always an information loss, since – besides point sampling and quantization – the geometric representation of a real object in the camera image plane in each captured frame is always in 2D. However, by using RGB-D sensors it is possible to build 3D point clouds of a scene, allowing to obtain a more accurate representation of the points that belong to real world objects. This way, new 3D object tracking techniques that use features extracted from 3D points clouds, previously inaccessible in 2D images, have been developed, allowing more precise 6 degree of freedom markerless 3D tracking algorithms. In order to contribute with current research related to 6 degree of freedom markerless 3D generic object tracking algorithms, this work proposes the use of particle swarm optimization to handle multiple pose hypotheses during top-down model-based tracking from RGB-D images. GPU processing was utilized with the aim of improving execution time. A series of experiments were performed, which revealed an improvement in accuracy obtained by the proposed tracking method in comparison to other state of the art optimization-based techniques. O termo Realidade Aumentada é usado para especificar os sistemas que possuem a tecnologia de inserir objetos virtuais em cenas reais, permitindo assim aumentar a quantidade de informações presentes no ambiente real original. No resultado final de uma cena filmada com Realidade Aumentada, o grau de naturalidade dessa inserção não está relacionado apenas com a qualidade da renderização dos objetos virtuais, mas também com a precisão com que se conhece a pose dos objetos reais em relação à câmera ao longo da filmagem, isto é, depende também da qualidade do rastreamento desses objetos. Marcadores artificiais, além de facilitar, podem aumentar a qualidade do rastreamento de objetos, porém em algumas situações nem sempre é possível ou desejável inserir manualmente marcadores na cena que vai ser rastreada. A solução adotada tem sido usar características presentes naturalmente nos objetos pertencentes à cena, esse tipo de rastreamento é chamado de rastreamento sem marcadores. Algumas técnicas de rastreamento sem marcadores usam o conhecimento prévio dos objetos que serão rastreados, isso é feito a partir da obtenção antecipada de modelos virtuais desses objetos. Existem diversos métodos de rastreamento a partir de modelos, alguns deles usam algoritmos de busca e otimização como o filtro de partículas ou a otimização por enxame de partículas para avaliar conjuntos de poses candidatas durante o rastreamento, estes métodos têm mostrado resultados muito bons. Ao filmar uma cena com uma câmera digital comum, há sempre a perda de informações, pois, além da amostragem e quantização dos pontos, a representação geométrica de um objeto real no plano de imagem da câmera a cada quadro capturado é sempre em 2D. Contudo, a partir de sensores RGB-D é possível construir nuvens de pontos 3D de uma cena, permitindo assim obter uma representação mais fiel dos pontos pertencentes aos objetos do mundo real. Dessa forma, novas técnicas de rastreamento de objetos 3D que usam características extraídas de nuvens de pontos 3D, antes inacessíveis em imagens 2D, têm sido desenvolvidas, proporcionando algoritmos de rastreamento sem marcadores e com 6 graus de liberdade mais precisos. Com o objetivo de contribuir com as pesquisas atuais relacionadas ao rastreamento sem marcadores de objetos 3D genéricos e com 6 graus de liberdade, este trabalho propõe o uso de otimização por enxame de partículas para lidar com múltiplas hipóteses de pose durante o rastreamento top-down a partir de imagens RGB-D e baseado em modelos. O processamento em GPU foi utilizado no intuito de aprimorar o tempo de execução. A realização de uma série de experimentos revelou uma melhora na precisão obtida pelo método de rastreamento proposto em comparação com outras técnicas baseadas em otimização do estado da arte. |
Databáze: | OpenAIRE |
Externí odkaz: |