Identificación de suelos expansivos y colapsables en el noreste de Brasil a partir de Redes Neuronales Artificiales generadas en Pernambuco

Autor: Holanda, Maria Julia de Oliveira, Ferreira, Silvio Romero de Melo, Amorim, Samuel Franca, Borges, Jesce John Silva, Silva, Larissa Ferreira da
Jazyk: portugalština
Rok vydání: 2021
Předmět:
Zdroj: Research, Society and Development; Vol. 10 No. 15; e110101522541
Research, Society and Development; Vol. 10 Núm. 15; e110101522541
Research, Society and Development; v. 10 n. 15; e110101522541
Research, Society and Development
Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
ISSN: 2525-3409
Popis: Collapsible and expansive soils are problematic in Civil Engineering, causing pathologies in buildings due to the variation in volume with the change in humidity. The identification of these soils in the design phase is important. The paper aims to develop an Artificial Neural Network architecture trained with soils from Pernambuco, to identify expansive and collapsible soils, and expand its application to soils from other states in Northeastern Brazil. Developed from 87 samples, divided between training (53 samples), selection (17 samples) and test (17 samples) groups, according to 4 input variables, percentage of sand, percentage of clay, plasticity and activity indices. The best network architecture consists of 4 neurons at the input and 1 at the output. For the blind validation of the model, the network was applied to 45 samples of collapsible and expansive soils from other Northeastern states. The performance analysis of the classification accuracy of the network with data from Pernambuco showed an accuracy rate of 76.5% and in the validation in the other Northeastern states, pattern recognition was even higher, reaching an accuracy of 91.1%, demonstrating capacity capturing trends in soil surface movement and aiding in problem solving. Los suelos colapsables y expansivos son problemáticos en la Ingeniería Civil, provocando patologías en los edificios debido a la variación de volumen con el cambio de humedad. La identificación de estos suelos en la fase de diseño es importante. El artículo tiene como objetivo desarrollar una arquitectura de Red Neural Artificial entrenada con suelos de Pernambuco, para identificar suelos expansivos y colapsables, y ampliar su aplicación a suelos de otros estados del noreste de Brasil. Desarrollado a partir de 87 muestras, divididas entre los grupos de entrenamiento (53 muestras), selección (17 muestras) y prueba (17 muestras), según 4 variables de entrada, porcentaje de arena, porcentaje de arcilla, índices de plasticidad y actividad. La mejor arquitectura de red consta de 4 neuronas en la entrada y 1 en la salida. Para la validación ciega del modelo, se aplicó la red a 45 muestras de suelos colapsables y expansivos de otros estados del Noreste. El análisis de desempeño de la precisión de clasificación de la red con datos de Pernambuco arrojó una tasa de precisión del 76.5% y en la validación en los otros estados del Noreste, el reconocimiento de patrones fue aún mayor, alcanzando una precisión del 91.1%, demostrando capacidad de captura de tendencias en el movimiento de la superficie del suelo y ayudar en la resolución de problemas. Solos colapsíveis e expansivos são problemáticos na Engenharia Civil causando patologias nas edificações devido à variação de volume com a mudança de umidade. A identificação desses solos na fase de projeto é importante. O artigo visa elaborar uma arquitetura de Rede Neural Artificial treinada com solos de Pernambuco, para identificação de solos expansivos e colapsíveis, e ampliar sua aplicação à solos dos demais estados do Nordeste brasileiro. Desenvolvida a partir de 87 amostras, divididas entre grupos de treinamento (53 amostras), seleção (17 amostras) e teste (17 amostras), segundo 4 variáveis de entrada porcentagem de areia, porcentagem de argila, índices de plasticidade e atividade. A melhor arquitetura da rede consiste em 4 neurônios na entrada e 1 na saída. Para a validação às cegas do modelo, a rede foi aplicada a 45 amostras de solos colapsíveis e expansivos de demais estados do Nordeste. A análise de desempenho da precisão de classificação da rede com dados de Pernambuco apresentou uma taxa de acurácia de 76,5% e na validação nos demais estados do Nordeste o reconhecimento de padrões foi ainda maior, atingindo acurácia de 91,1%, demonstrando capacidade de capturar tendências no movimento da superfície do solo e auxiliando na resolução de problemas.
Databáze: OpenAIRE