Modelos heterogêneos para a previsão de safras e qualidades de cultivo na indústria sucroenergética

Autor: CRUZ JÚNIOR, Geraldo Gomes da
Přispěvatelé: ALBUQUERQUE JÚNIOR, Gabriel Alves de, ALBUQUERQUE, Jones Oliveira de, CALLOU, Gustavo Rau de Almeida, MACIEIRA, Rafael Melo
Jazyk: portugalština
Rok vydání: 2019
Předmět:
Zdroj: Biblioteca Digital de Teses e Dissertações da UFRPE
Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
Popis: Submitted by Mario BC (mario@bc.ufrpe.br) on 2021-06-11T22:36:09Z No. of bitstreams: 1 Geraldo Gomes da Cruz Junior.pdf: 5793462 bytes, checksum: c2f591520b82a975ddf1355c83f7fd3f (MD5) Made available in DSpace on 2021-06-11T22:36:10Z (GMT). No. of bitstreams: 1 Geraldo Gomes da Cruz Junior.pdf: 5793462 bytes, checksum: c2f591520b82a975ddf1355c83f7fd3f (MD5) Previous issue date: 2019-02-20 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES Agriculture is an important sector for the Brazilian and world economy and society. The agroindustries together with small farmers are responsible for placing the country among the largest producers of this sector in the world. An important representative of the Brazilian agro-industry are the sugar-energy plants, responsible for the planting, cultivation and production of sugarcane by-products. Sugarcane accounts for 80 % of all sugar produced, Brazil being the largest producer of sugarcane in the world. Agriculture has been gaining a lot of strength, productivity and innovation, especially when aligned with recent technology concepts. Precision farming makes use of innovative software and hardware resources to evaluate and monitor crop conditions. With this, it generates a large set of data prepared for analysis and later serve for decision making. However, agroindustries usually use large areas for the planting of different types of monocultures. The size of these areas usually poses major problems for monitoring, pest control, the environment and planting. In order to maximize production while seeking to minimize environmental impacts, agribusiness increasingly seeks to invest in technologies and research that assist in the analysis of various data collected throughout the harvests. These data need to be processed to extract relevant information. Given this need, this work uses CRISP-DM as a process for data mining, which is a very useful tool as part of the definition of the project methodology. With the realized surveys and literature review, it is realized that it is necessary to make predictions and analyzes of future behaviors from modeled objects. However, the quality of the answers of any proposed model depends on the precision of the computational structure and the data that feed the model. The problematic raised is a complex system, that is, a system that is composed of numerous elements that interact, so that the aggregate behavior can not be inferred from the behavior of the constituent units alone, thus falling within the dynamics of cultivating a covering different variables of interest, such as temperature, luminosity, soil, among others. In order to understand the problematic and development of the solution proposals, the methodology of Tookit HCD was used, a process with principles focused on immersion to understand the problems and development of solutions in line with the needs of the end users. This dissertation discusses and suggests a pilot model for implementing an infrastructure for collection, storage, processing and visualization of plantation data through the use of the internet of things and mobile devices. The contribution is based on the presentation of two stochastic models for the community, focused on the prediction of harvests, quality indexes and cultivation scenarios of the different stages of sugarcane growth. The models obtained positive and promising results in the simulations. Data from the São José Agroindustrial Plant was used in a study area of 15 hectares. The first model presented, based on the use of the Monte Carlo method in Markov chains, obtained good results in the prediction of crops and quality indices of sugar cane. The model obtained in experiments hypothesis tests with p-values of 0.8754 and kappa coefficients of 0.68. The other model is based on stochastic cellular automata, which aims to simulate georeferenced scenarios of the plantation, also classifying regions as good, bad or medium. The model obtained in experiments a p-value of 0.8635 in the hypothesis test and a kappa coefficient of 0.71. In both models the p-values and kappas indicate a positive relationship between the model results and the base data. Investment in agricultural technologies and innovations is essential to optimize production in this sector, as well as reduce costs while preserving the environment. A agricultura é um importante setor para a economia e sociedade brasileira e mundial. As agroindústrias junto com pequenos agricultores, são responsáveis por colocar o país entre os maiores produtores deste setor no mundo. Um importante representante da agroindústria brasileira são as usinas sucroenergéticas, responsáveis pelo plantio, cultivo e produção de derivados da cana-de-açúcar. A cana-de-açúcar é responsável por 80% de todo o açúcar produzido, sendo o Brasil o maior produtor de cana no mundo. A agricultura vem ganhando muita força, produtividade e inovação, principalmente quando alinhada a conceitos de tecnologias recentes. A agricultura de precisão faz uso de recursos inovadores de softwares e hardwares para avaliar e monitorar as condições de cultivos. Com isso, gera um grande conjunto de dados preparados para serem analisados e posteriormente servirem para a tomada de decisão. Porém, as agroindústrias normalmente utilizam grandes áreas para o plantio de diferentes tipos de monoculturas. A dimensão dessas áreas geralmente acarreta grandes problemas para o monitoramento, controle de pragas, meio ambiente e cultivo da plantação. Visando maximizar a produção enquanto se procura minimizar os impactos ambientais, o agronegócio procura cada vez mais investir em tecnologias e pesquisas que auxiliem na análise de diversos dados coletados ao longo das safras. Esses dados precisam ser tratados para se extrair informações relevantes. Tendo em vista essa necessidade, este trabalho utiliza o CRISP-DM como processo para a mineração dos dados, o qual é uma ferramenta muito útil como parte da definição da metodologia do projeto. Com os levantamentos realizados e revisão da literatura, percebe-se que é necessário fazer previsões e análises de comportamentos futuros a partir de objetos modelados. Contudo, a qualidade das respostas de um modelo qualquer proposto depende da precisão da estrutura computacional e dos dados que alimentam o modelo. A problemática levantada se trata de um sistema complexo, ou seja, um sistema que é composto por inúmeros elementos que interagem, de modo que o comportamento agregado não pode ser inferido do comportamento das unidades constituintes isoladamente, logo se enquadrando na dinâmica de cultivo de um canavial, abrangendo diferentes variáveis de interesse, como temperatura, luminosidade, solo, dentre outras. Para a compreensão da problemática e desenvolvimento das propostas de solução utilizou-se a metodologia do Tookit HCD, um processo com princípios focados na imersão para compreensão da problemáticas e desenvolvimento de soluções alinhadas com as necessidades dos usuários finais. Esta dissertação discute e sugere um modelo piloto para implantação de uma infraestrutura para coleta, armazenamento, processamento e visualização de dados das plantações através da utilização da internet das coisas e de dispositivos móveis. A contribuição parte da apresentação de dois modelos estocásticos para a comunidade, focados na predição de safras, índices de qualidade e cenários de cultivo das diferentes fases de crescimento da cana-de-açúcar. Os modelos obtiveram resultados positivos e promissores nas simulações realizadas. Utilizou-se dados da Usina Agroindustrial São José, em uma área de estudo de 15 hectares. O primeiro modelo apresentado, baseado na utilização do método de Monte Carlo em cadeias de Markov, obteve bons resultados na predição de safras e índices de qualidade do canavial. O modelo obteve em experimentos testes de hipótese com p-values de 0.8754 e coeficientes kappa de 0.68. O Outro modelo é embasado em autômatos celulares estocástico, o qual visa a simulação de cenários georreferenciados da plantação, também classificando regiões como boas, más ou medianas. O Modelo conseguiu em experimentos um p-value de 0.8635 no teste de hipótese e um coeficiente kappa de 0.71. Em ambos os modelos os p-values e kappas indicam uma relação positiva entre os resultados dos modelos e os dados da base. O investimento em tecnologias e inovações agrícolas é essencial para otimizar as produções desse setor, bem como reduzir gastos enquanto se preserva o meio ambiente.
Databáze: OpenAIRE