SmartLTM: Larger-than-memory database storage for hybrid database systems
Autor: | Amora, Paulo Roberto Pessoa |
---|---|
Přispěvatelé: | Machado, Javam de Castro |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Repositório Institucional da Universidade Federal do Ceará (UFC) Universidade Federal do Ceará (UFC) instacron:UFC |
Popis: | Random access memory (RAM) is a valuable resource in computer systems, but as time passes, computer systems allow for more memory and it is becoming more affordable. Main-memory DBMS can offer hybrid and evolving storage architectures, instead of the traditional row or column storage layouts. In spite of affordability, RAM is still a limited resource concerning available storage space in comparison to conventional storage devices. Due to this space restriction, techniques that leverage a trade-off between storage space and query performance were developed and, consequently, they should be applied to data that is not frequently accessed or updated. This work proposes a data eviction mechanism that considers the decisions previously taken by the DBMS in optimizing data storage according to query workload. We discuss how to migrate data, access it and the main differences between our approach and a row-based one. We also analyze the behavior of our solution in different storage media. Experiments show that cold data access with our approach incurs an acceptable 17% of throughput loss, against 26% of the row-based one, while retrieving only half of the data in average to answer queries. Memória de acesso randômico (RAM) é um recurso valioso em sistemas computacionais, mas com o passar do tempo, mais memória tem sido disponibilizada para estes sistemas, uma vez que seu valor de aquisição tem descrescido ao longo dos anos. SGBDs em memória podem ser projetados com uma arquitetura de armazenamento híbrido, diferentemente de layouts tradicionais de organização dos dados em registros e colunas. Apesar de sua crescente facilidade de aquisição, memória RAM ainda é um recurso limitado em espaço de armazenamento em comparação com os modernos dispositivos de armazenamento persistente. Devido à restrição de espaço das RAMs, estudos tem sido realizados para melhorar o desempenho do processamento de consultas considerando o espaço de armazenamento dos dados, em particular procurando alocar os dados utilizados com menos frequencia em locais de armazenamento de menor desempenho, abrindo espaço para ocupar a memória mais rápida com dados de uso mais frequente. Esta dissertação propõe um mecanismo de despejo de dados que considera a estrutura de armazenamento de um SGBD previamente definida como forma de otimizar o armazenamento dos dados de acordo com a carga de trabalho que lhe é submetida. Nesta dissertação discutimos como migrar, de maneira automática, os dados da memória mais rápida para a memória persistente de maior capacidade mas mais lenta, as estruturas de dados de acesso e as principais diferenças entre a nossa abordagem e aquelas que tem como base o armazenamento de registros. Nós também analizamos o comportamento da nossa estratégia para diferentes dispositivos de armazenamento. Experimentos mostraram que o acesso a dados ditos frios em nossa abordagem leva a uma perda de desempenho de apenas 17% do tempo de acesso enquanto que esta perda é de 26% em abordagens baseadas em armazenamento de registros, ao mesmo tempo em que apresentamos uma taxa de 50% de acesso aos dados em disco para responder às consultas. |
Databáze: | OpenAIRE |
Externí odkaz: |